ESA's Biomass mission candidate: system and payload overview <u>K. Scipal</u>, M. Arcioni, F. Fois, C. Lin

esa

-mm))))

PolInSAR 2013 Workshop, ESA-ESRIN

Primary mission objectives

- 1. Reducing the major uncertainties in carbon fluxes linked to Land Use Change, forest degradation and regrowth
- Providing support for International Agreements (UNFCCC and REDD+)
- 3. Inferring landscape carbon dynamics and supporting predictions
- Initialising and testing the land component of Earth System models
- 5. Providing key information on forest resources, ecosystem services, biodiversity and conservation

Secondary objectives

- 1. Sub-surface geology in deserts;
- 2. DTMs under dense vegetation;
- 3. Glacier and ice sheet velocities

Biomass product requirements

Above-ground biomass (tons/hectare)

Upper canopy height

(meter)

Areas of forest clearing (hectare)

 200 m resolution 50 m resolution 200 m resolution • 1 map every 6 months • 1 map every 6 months • 1 map every 6 months global coverage of forested global coverage of forested global coverage of forested areas areas areas accuracy of 20-30% 90% classification accuracy accuracy of 20%, or 10 t ha⁻¹ for biomass < 50 t ha⁻¹

Biomass will be implemented as SAR

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 4

Satellite configuration and key drivers

Payload overview

- The P-band (435 MHz, ~69 cm wavelength) Synthetic Aperture Radar (SAR) has full polarimetric and multi-pass interferometric capabilities
- The signal bandwidth is 6 MHz, a maximum allowed by the frequency spectrum allocation (ITU)
- The SAR has a single antenna beam and operates in a simple stripmap mode with successive switching after each orbit cycle over to three swath positions through satellite-roll

System performance at Level 1B

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 7

Orbit and observation geometry

Determining factors

- 25 days revisit or less
- Forest coverage in 6-7 months
- SAR swath width & radiometric performance
- Minimise ionospheric disturbance
- Avoid excessive air drag
- Drift for interferometric baseline

Baseline orbit

- Sun-synchronous drifting
- Local time 06:00
- Repeat cycle (RC): 17 days
- Altitude: 672 km
- Ascending & Descending Acquisitions
- Beam re-pointing after every 3 cycles by satellite roll manoeuvre
- Swaths: ~60 km, ~50 km, ~40 km

Orbit and observation geometry (Option)

- In order to minimise the temporal decorrelation, a new observation concept with a repeat cycle as low as 3 or 4 days has been studied and is proposed as an option
- This optional concept uses orbit manoeuvres lasting 11-7 days after every nine repeat cycles (defined as a major cycle) to introduce a ground track shift
- In such a way, global coverage is achieved in 6-7 months by a sequence of major cycles, each followed by an orbit manoeuvre

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 9

At P band, coherence remains high (> 0.7) in airborne and ground based data

	Baseline	Option
Launch & Early Orbit Phase	1 week 5 months	
Commissioning	5 months	
Ton	nographic Phase	
Repeat Cycle	4 days	4 days
Duration	3 months	1 year
Coverage	Partial	Global
Nominal Phase		
Repeat Cycle	17 days	4 days
Duration	4.7 years	4 years
Coverage	Global	Global
Disposal	9 days	

Option

Disposal

Critical areas - SOTR

- Operation of Space Objects Tracking Radar (SOTR) systems restricts the imaging opportunities for Biomass because of the potential impact on the SOTR performance from the Biomass SAR signal.
- Discussions have taken place between ESA and the USA Department of Defense (DoD).
- Preliminary analysis performed by DoD concluded that ESA do no operate Biomass when in sight of SOTR stations.

Where are the unobserved areas and the critical zones of forest change?

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 13

The ionosphere has little effect on Biomass primary objectives: Faraday rotation

Faraday rotation can be corrected to better than 1° using polarimetric data, which gives negligible effect on PoISAR and PoIInSAR.

In the process, Total Electron Content is measured, making Biomass an excellent tool for measuring ionospheric structure.

The ionosphere has little effect on Biomass primary objectives: scintillations

Mean ISLR at 50-percentile CkL. 20-Mar. Rz12=62.8. Dusk. Swath=-25 (Right-looking

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 15

auroral scintillations.

Biomass estimators: tropical forest

mean biomass

Paracou, French Guiana, 6 MHz data, in situ biomass: 260-430 ton/hectare

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 16

Maps of change in carbon stock from spring 2007 to autumn 2010 at Remningstorp; resolution = 200 m

Biomass will be able to detect a 10tC/ha change during a 4year period

Conclusion

- 1. Biomass is a true Earth Explorer
 - a) First P-band SAR in Space.
 - b) First mission in space allowing systematic tomographic acquisitions.
- 2. Biomass meets all its performance requirements
 - a) Inversion results over tropical and boreal forests indicate an accuracy of $\sim 20\%$ for biomass and $\sim 30\%$ for forest height.
 - b) Change maps over a 4 year period achieve a performance better than 20%.
 - c) The potential of SAR tomography has been demonstrated.
- 3. Biomass is technically feasible
 - a) At platform level no critical elements have been identified.
 - b) At payload level, some development risks are associated (specifically in the feed system, the power amplifier and the instrument calibration).

Conclusion

- **1.** Biomass is a true earth explorer
 - a) First P-band SAR in Space.
 - b) First mission in space allowing systematic tomographic acquisitions.
- 2. Biomass meets all its performance requirem
 - .cate an accuracy of
- _____a achieve a performance better than
 - The Graz, AL , of SAR tomography has been demonstrated
- 3. Biomass is technically feasible
 - a) At platform level no critical elements have been identified.
 - b) At payload level, some development risks are associated (specifically in the feed system, the power amplifier and the instrument calibration).

Thank You!

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 20

SAR tomography provides information for PoISAR & Pol InSAR

- Structure information for PolSAR
- Biomass and height maps for PolSAR & Pol InSAR calibration

Temporal effects in tropical forests

Biomass | PolInSAR 2013 | ESA - ESRIN | 28th January 2013 | Slide 22

Using polarisation & slope information radically improves measurement accuracy

HV, HH, VV & DEM

Remningstorp 70 MHz data: varying environmental conditions in 3 months

HV, HH & VV

HV only

Training on stratified subset of Krycklan (northern site) data

Reference data in Remningstorp (southern site): Blue - from lidar map, std. error = 25 ton/ha Black - from 80 m x 80 m *in situ* plots, std. error = few %

