→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

Ship detection using polarimetric RadarSat-2 data and multi-dimensional coherent Time-Frequency analysis

Canbin Hu¹, Laurent Ferro-Famil¹, Camilla Brekke², Stian Normann Anfinsen²
¹ University of Rennes 1, IETR, SAPHIR team, France
² University of Tromsø, Department of Physics and Technology, Norway

Jan. 2013

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

Outline

Principle of TF analysis TF decomposition TF SAR signal model Polarimetric coherence TF indicator

Application to ship detection

Ship in open sea Ship in sea ice

Conclusion

Where is the ship?

Time-Frequency decomposition esa

Local spectral estimation

$$oldsymbol{\omega} = [l_{az}, l_{rg}] \qquad oldsymbol{\omega} = [\omega_{az}, \omega_{rg}]$$

T-F SAR image

Azimuth

Range

$$\omega_{rg_0} \in \left[\omega_c \pm \frac{B_\omega}{2}\right]$$

$G(\boldsymbol{\omega}-\boldsymbol{\omega_0})$

Х

TF varying SAR signal model

Varying T-F signal model

$$\mathbf{s}(oldsymbol{\omega}) = \mathbf{t}(oldsymbol{\omega}) + \mathbf{c}(oldsymbol{\omega})$$

- $\mathbf{s}(\omega)$: varying composite signal
- $\mathbf{t}(\omega)$: quasi-deterministic, slowly varying component \Rightarrow highly coherent

 $\mathbf{c}(\omega)$: random component, potentially non-stationary \Rightarrow incoherent scattering

coherence T-F behaviors

coherence

(Ref: L. Ferro-Famil & E. Pottier, "Urban area remote sensing from L-band PolSAR data using Time-Frequency techniques", in Proc. Urban Remote Sens. Joint Event, Apri. 2007, Paris)

low

high

→ POLINSAR 2013

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Cesa

Full-Pol TF coherence analysis esa

Full-pol response sampled at *R* spectral positions:

$$\mathbf{k}_{TF-Pol} = \begin{bmatrix} \mathbf{k}_1 \\ \vdots \\ \mathbf{k}_R \end{bmatrix} \text{ where } \mathbf{k}_i = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{hh}(\boldsymbol{\omega}_i) + S_{vv}(\boldsymbol{\omega}_i) \\ S_{hh}(\boldsymbol{\omega}_i) - S_{vv}(\boldsymbol{\omega}_i) \\ 2S_{hv}(\boldsymbol{\omega}_i) \end{bmatrix}$$

$$\Rightarrow \mathbf{T}_{TF-Pol} = \left\langle \mathbf{k}_{TF-Pol} \, \mathbf{k}_{TF-Pol}^{\dagger} \right\rangle = \left[\begin{array}{ccc} \mathbf{T}_{11} & \dots & \mathbf{T}_{1R} \\ \vdots & \ddots & \vdots \\ \mathbf{T}_{1R}^{\dagger} & \dots & \mathbf{T}_{RR} \end{array} \right] (3R \times 3R)$$

T-F coherence behavior characterization

TF-Pol coherence matix off-diagonal terms: T_{ij} $i \neq j$

Coherent pixel detection

Hypothesis testing

 H_0 : Uncorrelated PolSAR responses over R spectral positions

$$\begin{aligned} \mathbf{T}_{TF-Pol} &\sim \mathcal{W}_c(n, \mathbf{\Sigma}_{TF-Pol}) & \mathbf{\Sigma}_{TF-Pol} &= \begin{bmatrix} \mathbf{\Sigma}_{11} & \dots & \mathbf{\Sigma}_{1R} \\ \vdots & \ddots & \vdots \\ \mathbf{\Sigma}_{1R}^{\dagger} & \dots & \mathbf{\Sigma}_{RR} \end{bmatrix} \\ H_0 &: \mathbf{\Sigma}_{ij} = \mathbf{0} \quad \forall i \neq j & \mathbf{\Sigma}_{TF-Pol}|_{H_0} &= \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \ddots & & \vdots \\ \vdots & & \ddots & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{\Sigma}_{RR} \end{bmatrix} \end{aligned}$$

Maximum Likelihood test

$$\Theta = \frac{\max L(\boldsymbol{\Sigma}_{TF-Pol}|_{H_0})}{\max L(\boldsymbol{\Sigma}_{TF-Pol})} = \frac{|\mathbf{T}_{TF-Pol}|^n}{\prod_{i=1}^{R} |\mathbf{T}_{ii}|^n}$$

- Decide H_0 if $\Theta > c_{eta}$
- Threshold c_{β} : $P_{fa} = \Pr(\Theta < c_{\beta} | H_0) = \beta$

$$\Theta = \frac{|\mathbf{T}_{TF-Pol}|^n}{\prod_{i=1}^R |\mathbf{T}_{ii}|^n} = |\tilde{\mathbf{T}}_{TF-Pol}|^n$$

$$ilde{\mathbf{T}}_{TF-Pol} = \mathbf{P} \, \mathbf{T}_{TF-Pol} \, \mathbf{P}^{\dagger}$$

Coherence information

$$\mathbf{\Pi}_{ij} = \mathbf{T}_{ii}^{-\frac{1}{2}} \mathbf{T}_{ij} \mathbf{T}_{jj}^{-\frac{1}{2}}$$

TF-Pol coherence

$$\rho_{TF-Pol} = 1 - |\tilde{\mathbf{T}}_{TF-Pol}|^{\frac{1}{3R}} \qquad 0 \le \rho_{TF-Pol} \le 1$$

Applied data sets

Radarsat-2 SAR data in fine quad-pol mode

> Two groups:

 Ship in open sea (harbor, islands & artefact)

2) Ship in sea ice (ice cracks, ridges, ice-infested water etc.)

Ships in the open sea of San Francisco area esa

Optical image ⇒ Spectral locations:4

Pauli imageTF-Pol coherence⇒ Direction: 2 in Azimuth, 2 in Range

POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

ship vs. island

Optical image

Pauli image

TF-Pol coherence

Discriminating ships from small natural island

POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

Ships in the open sea of Vancouver area esa

Range

ship vs. 'ghosts'

Ships in sea ice

test site:

near Savalbard archipelago Norway

> test time:

- 11 April 2011 (Red)
- 12 April 2011 (Yellow)
- 13 April 2011 (Green)

Verified ship in the sea ice

Norwegian coast guard icebreaker and offshore patrol vessel

Name: K/V Svalbard

- Length: 103.7 m
- > Breadth: 19.1 m

11 April 2011

Pauli basis

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

eesa

Pauli ⇒ Spectral locations:4

TF coherent (threshold =0.79)⇒ Direction: 2 in Azimuth, 2 in Range

POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Pauli image

Η

⇒ Spectral locations:
4
⇒ Direction:
2 in Azimuth,
2 in Range

 $ho_{_{TF-Pol}}$

Pauli basis

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

⇒ Spectral locations:4

⇒ Direction: 2 in Azimuth, 2 in Range

POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

13 April 2011

Pauli basis

European Space Agency

⇒ Spectral locations:4

⇒ Direction: 2 in Azimuth, 2 in Range

POLINSAR 2013
28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Where is the ship?

POLINSAR 2013
28 January - 1 February 2013 | ESA-ESRIN | Frascati (Research 1996)

Conclusion

T-F coherence analysis

- ⇒ A multi-data set, polarimetrically adaptive, detector
- \Rightarrow Coherent behavior : (3R×3R) TF normalized coherence matrix
- \Rightarrow a novel detector: TF-Pol coherence indicator ρ_{TF-Pol}

Application to ship detection

- ⇒ Ship vs. Small Natural island
- \Rightarrow Ship vs. Artefact ('Ghosts')
- \Rightarrow Ship vs. Sea ice

Enhance contrast efficiently beween ships and background

- ⇒ When full-res polarisation does not perform well (high entropy)
- ⇒ In very difficult environements (low Signal to Clutter Ratio)

Ongoing and future work

- ⇒ using dual polarization data for ship detection
- ⇒ Improved statistical T-F descriptors