

POL-INSAR TECHNIQUES FOREST CHARACTERISATION WITH TANDEM-X

Florian Kugler, Kostas Papathanassiou, Irena Hajnsek

DLR, HR Institute

PolinSAR 2013, Frascati, 29-January-2013

TanDEM-X Data Acquisition Modes

Pursuit Monostatic

Allows Dual-Pol (HH/VV, HH/HV, VV/VH, HV/VH, HH/VH, VV/HV) acquisitions in an experimental mode

- decorrelation & atmospheric disturbances
- no PRF and phase synchronisation required (backup solution)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Bistatic

- ive transmitter alternates between PRF pulses
 - provides three interferograms with two baselines in a single pass
 - enables precise phase synchronisation, calibration & verification
- one satellite transmits and both satellites receive simultaneously
- small along-track displacement required for Doppler spectra overlap
- requires PRF and phase synchronisation

Standard DEM Mode

TanDEM-X Data Acquisition Modes

Pursuit Monostatic

Alternating Bistatic

- transmitter alternates between PRF pulses
- provides three interferograms with two baselines in a single pass
- enables precise phase synchronisation, calibration & verification

Provides in one pass two different baselines (1 monostatic and 1 bistatic) in a single Polarisation

- both satellites transmustic receive independently
- susceptible to tem Experimental mode ously decorrelation & atmospheric
 small along-track disturbances
 displacement rec
- no PRF and phase synchronisation required (backup solution)

-Kz2.= 2* Kz1 satellite transmits and both satellites receive

- small along-track
 displacement required for
 Doppler spectra overlap
- requires PRF and phase synchronisation

Standard DEM Mode

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

X-band Inversion

Mawas Test Site

- Peat swamp forest Forest Height: 15m – 25m Biomass around 100-350t/ha
- Uniform structure
- Open canopy
- Flat Topography

Dry Season ~ April to November

Wet Season ~ November to April

Lidar Measurements August 2011

Strip split in 100 parts for validation

Date	Baseline [m]	Incidence angle	Kz	Height of ambiguity	Polarisation
4. September 2011	113	36.7°	0.12/0.25	51m/25m	VV

Mawas Baseline sensitivity

Second Baseline not sensitive to heights larger than 25m > Underestimation expected

Data Overview

Dual Baseline data sets

Date	Baseline [m]	Incidence angle	Kz	Height of ambiguity	Polarisation
4. September 2011	113	36.7°	0.12/0.25	51m/25m	vv

Time Serie of 5 acquisitions in VV

Dual Pol data sets:

	Date	Baseline [m]	Incidence angle	Kz	Height of ambiguity	Polarisation
	25. August 2011	92	30.5°	0.12	52m	HH/VV
	13. December 2011	54	30.5°	0.07	89m	HH/VV
	24. December 2011	55	30.5°	0.07	89m	HH/VV
	4. January 20102	58	30.5°	0.08	79m	HH/VV

Mawas Alternating Bistatic Coherence

Amplitude

Coherence Bsl.1

Coherence Bsl.2

Mawas Alternating Bistatic Phase

Amplitude

Phase Bsl.1

Phase Bsl.2

Mawas Zoom Area of Interest

Amplitude with Lidar H100

30m

20m

10m

Sacattering Centre Height I

Amplitude with Lidar H100

Scattering Centre height over Coherence Bsl. 1

Sacattering Centre Height Temporal Evolution

Mawas Single Baseline 1

Amplitude with Lidar H100

Single Baseline Height First Baseline over Coherence

Offset due to dry forest condition (seasonal effect)

Mawas Single Baseline 2

Amplitude with Lidar H100

Single Baseline Height Second Baseline over Coherence

Offset increases due to limitted baseline sensitivity

Mawas Single Baseline Temporal Evolution

2nd

r = 0.91

20

30

r = 0.98

20

H100 [m]

RMSF = 1.9

Slide 16

 $4 \cap$

40

Mawas Dual Baseline I

Amplitude with Lidar H100

Dual Baseline Height over Coherence Bsl. 1

Mawas Comparision Dual Baseline vs. Dual Pol

Concluding Remarks

- Baseline limitations: Degraded performance of Dual Baseline Inversion due to insensitivity of the large baseline to high forest heights
- Seasonal effects in Heights Estimation could be observed (dry leafless treetops become invisible to the radar)
- Dual baseline inversion seems to perform better than dual pol inversion
- Probably insufficient polarisation dependent ground contribution for this forest type in X-band. Dual baseline inversion helps to solve this problem