Performance Comparison between Dual Polarimetric and Fully Polarimetric data for DInSAR Subsidence monitoring

Dani Monells, Jordi J. Mallorquí

Universitat Politècnica de Catalunya, Departament de Teoria del Senyal i Comunicacions. D3 - Campus Nord, UPC, 08034, Barcelona, Spain. Email: dmonells@tsc.upc.edu

OUTLINE

- Introduction
- DInSAR Processing
- Phase Quality Estimation and Optimization
 - → Mean Interferometric Coherence
 - → Amplitude Dispersion
- DUAL-POL VS QUAD-POL in Polarimetric Optimization
- Dataset
- Statistical Comparison
- DInSAR Results
- Conclusions

Introduction

- Spaceborne DInSAR: Technique widely used to survey terrain deformation from large areas with high resolution.
 - → SINGLE-POL Data Oriented → Unavailability of PolSAR data
- Polarimetric Data availability
 - → Old and Current Missions
 - L-Band: ALOS
 - C-Band: Envisat, Radarsat-2
 - X-Band: TerraSAR-X, Cosmo_Skymed, Tandem-X
 - → Future Missions
 - L-Band: ALOS-2
 - C-Band: Sentinel, Radarsat Constellation
 - X-Band: TerraSAR-X2, PAZ
- Providing Both DUAL-POL and FULL-POL data

DinSAR processing

- Differential Phase: Phase information about terrain deformation between acquisitions.
- **Pixel Selection: Pixel Candidates with** high phase quality. **Indirect estimators**.
- Triangulation: Work with the relative phase between pixels to avoid unwrapping.
- Phase Linear model: Adjust phase increments to a linear model depending on deformation rate and topographic error
- Integration: Obtain terrain deformation rate and topographic error absolute values from the relative values.

DinSAR Processing

• Differential Phase: Phase information about terrain deformation between acquisitions.

• **Pixel Selection: Pixel Candidates with** high phase quality. Indirect estimators.

- Triangulation: Work with the relative phase between pixels to avoid unwrapping.
- Phase Linear model: Adjust phase increments to a linear model depending on deformation rate and topographic error
- Integration: Obtain terrain deformation rate and topographic error absolute values from the relative values.

Phase Quality Estimation and Optimization

Mean Interferometric Coherence

$$\hat{\gamma} = \left\langle \frac{\left| \mathbf{w}^{H} \mathbf{\Omega}_{ij} \mathbf{w} \right|}{\sqrt{\mathbf{w}^{H} \mathbf{T}_{ii} \mathbf{w} \cdot \mathbf{w}^{H} \mathbf{T}_{jj} \mathbf{w}}} \right\rangle$$

- Characteristics
 - → Resolution loss due to multilook
 - → Multibaseline Approach
 - Preservation of the projection vector W
 - Temporal sensitivity given by the mean operator
 - → Distributed targets oriented
 - → Optimization method
 - ESM-MB: Numeric Iterative Solution (Neumann et al, January 2008)

Phase Quality Estimation and Optimization

• Amplitude Dispersion

$$D_{A}(\mathbf{w}) = \frac{1}{\left\langle \left| \mathbf{w}^{H} \cdot \mathbf{k} \right| \right\rangle} \cdot \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\left| \mathbf{w}^{H} \cdot \mathbf{k}_{i} \right| - \left\langle \left| \mathbf{w}^{H} \cdot \mathbf{k} \right| \right\rangle \right)^{2}} \\ \left\langle \left| \mathbf{w}^{H} \cdot \mathbf{k} \right| \right\rangle = \frac{1}{N} \cdot \sum_{i=1}^{N} \left| \mathbf{w}^{H} \cdot \mathbf{k}_{i} \right|$$

- Characteristics
 - → Preserves full resolution of data
 - → Multibaseline nature inherent to the estimator
 - → Deterministic targets oriented
 - → Optimization method
 - ESM: Numeric Parametric Solution (Navarro et al, April 2010)

$$\mathbf{w} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \cos \beta e^{j\delta} \\ \sin \alpha \sin \beta e^{j\gamma} \end{bmatrix}$$

DUAL-POL VS QUAD-POL in Polarimetric Optimization

- FULL-POL characteristics
 - → Channels available
 - HH, VV, HV
 - → Phase Quality Optimization
 - Able to reach the absolute optimum value
 - Higher complexity
- DUAL-POL characteristics
 - → Channels available
 - Direct Channels: HH&VV
 - Direct and Cross Polar Channel: HH&HV, VV&VH
 - → Phase Quality Optimization
 - Not able to reach the optimum value
 - Lower complexity and computational cost

Dataset

- Location: Barcelona
- Sensor: Radarsat-2
- Band: C
- Dataset: 37 Fine Quad-Pol Acquisitions
- Temporal span: From January 2010 to July 2012
- Diagnosis: Subsidence due to underground construction
- Generation of DUAL-POL datasets narrowing down the FULL-POL dataset

Statistical Comparison. Mean Coherence

- Poor improvement FULL-POL / DUAL-POL VS SINGLE-POL
 - → Low Coherence peak: Rural area
 - → High Coherence peak: Urban area

Statistical Comparison. Mean Coherence

- Focus on urban area
 - → Quality improvement in high coherence points
 - → Multibaseline nature of data

Statistical Comparison. Mean Coherence

PIXEL CANDIDATES	
METHOD	NUMBER OF PIXELS
HH	6,060 (4.0%)
HV	4,796 (3.2%)
VV	4,675 (3.1%)
DUAL-POL HH-VV	11,390 (7.5%)
DUAL-POL HH-HV	10,961 (7.2%)
DUAL-POL VV-VH	9,709 (6.4%)
FULL-POL	16,469 (10.8%)

- Mean Coherence threshold: 0.75 (~5° std. dev. in 9x5 multilook window)
- Factor ~1.5-2 between DUAL-POL and QUAD-POL

- High improvement
 - → FULL-POL >> DUAL-POL >> SINGLE-POL

- Urban area: Similar histograms as in the full crop
- No difference between the different DUAL-POL and SINGLE-POL modes
 - → Clutter >> Stable points

- Histograms of high amplitude points
 - → Lower performance of Cross polar channel and DUAL-POL modes implied

PIXEL CANDIDATES		
METHOD	NUMBER OF PIXELS	
HH	75,653 (1.1%)	
HV	64,815 (0.9 %)	
VV	66,377 (1.0 %)	
DUAL-POL HH-VV	228,853 (3.3%)	
DUAL-POL HH-HV	217,785 (3.2%)	
DUAL-POL VV-VH	214,435 (3.1%)	
FULL-POL	463,412 (6.7%)	

- Amplitude Dispersion threshold: 0.25 (~15° std. dev.)
- Factor >2 between DUAL-POL and QUAD-POL

•

DInSAR Results. Test Area

DInSAR Results. Amplitude Dispersion SINGLE-POL

DInSAR Results. Amplitude Dispersion DUAL-POL

DInSAR Results. Amplitude Dispersion FULL-POL

Conclusions

- This work considers the benefits of FULL-POL over DUAL-POL data in the PolDInSAR framework.
- **DUAL-POL** advantages
 - → Lower computational load
 - → Lower storage size
 - → DUAL-POL modes with direct channels are more suitable for urban areas
- FULL-POL advantages
 - → Absolute optimization
 - → Doubles the performance of DUAL-POL data

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

Acknowledgments

This work is supported by the project **TEC2011-28201-C02-01** and the grant **BES-2009-015990** associated to the project **TEC2008-06764-C02-01**, both funded by the Spanish **MICINN**. The **Radarsat-2** images were provided by **MDA** in the framework of the scientific project **SOAR-EU 6779**.

