Polarimetric Response of Rice Fields at C-band: Analysis and Applications

Juan M. Lopez-Sanchez Fernando Vicente J. David Ballester-Berman

Universitat d'Alacant Universidad de Alicante Shane R. Cloude

Previously...

- Coherent dual-pol HHVV images acquired by TerraSAR-X showed the sensitivity of polarimetry to track and retrieve phenology of rice fields
 - Results:
 - Five phenological intervals can be identified
 - Phenology estimated from just <u>one acquisition</u>
 - Usefulness:
 - At pixel level: different growth rates within a parcel and cultivation problems
 - At parcel level: overall development rate for planning and triggering of cultivation practises
 - Limitations:
 - Ambiguity: Start of tillering (stages 18-21) and maturation (stages 70+) present <u>high entropies</u> and cannot be distinguished in many cases
 - Small swath (low spatial coverage)
 - Low SNR at some stages (NESZ ~ -19 dB)

Pending questions

- Could the ambiguities found with HHVV images be solved by full polarimetry?
 - Test it with Radarsat-2...
 - But acquisitions during 2009 were restricted to the first half of the campaign Lopez-Sanchez et al. [POLinSAR2011]
- What is the influence of frequency band (C vs X) on the polarimetric observables as a function of phenology?
- Can phenology be retrieved with a single Radarsat-2 image?
- Is full polarimetry strictly required for such an application? What about compact-pol or conventional dual-pol?
 - Interest for RCM, Sentinel-1, etc.
 - Increased spatial coverage

Test site

Mouth of the Guadalquivir river, Seville, Spain

Radarsat-2, 6-Aug-2010 Pauli RGB composite

Ground campaign: 2009 and 2010

- Ground data provided at 5 and 6 parcels
 - Weekly update
 - Phenological stages in BBCH scale
 - + Additional info:

2009								
Label	Surface (ha)	Sowing date (DoY)	Plants/m ²	Panicles/m ²	Harvest date (DoY)	Yield (kg/ha)		
А	13.14	17-may (137)	315	530	07-oct (280)	8.949		
В	12.47	15-may (135)	350	600	29-sep (272)	8.729		
С	40.5	07-may (127)	850	1300	25-sep (268)	10.400		
D	4.34	24-may (144)	400	512	08-oct (281)	10.060		
Е	17.26	15-may (135)	450	580	14-oct (287)	9.000		
2010								
Label	Surface (ha)	Sowing date (DoY)	Plants/m ²	Panicles/m ²	Harvest date (DoY)	Yield (kg/ha)		
А	13.14	22-may (142)	469	620	19-oct (292)	9.493		
В	12.47	22-may (142)	464	510	18-oct (291)	8.400		
С	40.5	17-may (137)	425	560	02-oct (275)	10.057		
D	4.34	23-may (143)	350	640	13-oct (286)	10.495		
Е	17.26	02-jun (153)	183	549	04-nov (307)	9.500		
F	9.68	27-may (147)	380	540	27-oct (300)	9.403		

Ground data acquired by the *Federación de Arroceros de Sevilla*

Universitat d'Alacant Universidad de Alicante

Available radar data

10 Radarsat-2 images

Mode	Fine Quad-Pol.		Date	DoY	
Boam	E013		07-May-2009	127	
Deam			31-May-2009	151	
Avg. Incidence angle	33 degrees		24-Jun-2009	175	Every 24 days
Pass	Descending		18-Jul-2009	199	
			11-Aug-2009	223	
Acquisition time	6:30 a.m.		26-May-2010	146	
Pixel spacing	4.7 x 4.7 m		19-Jun-2010	170	
		1	06-Aug-2010	218	Gaps (missed acquisitions)
			23-Sep-2010	266	\swarrow
			17-Oct-2010	290	

Images provided by MDA and CSA under the SOAR project 2125

Phenology at radar acquisition dates

Universitat d'Alacant Universidad de Alicante

AEL

Observations at every parcel and date

Pauli RGB composite

Data analysis

Observables vs phenology

Backscattering coefficients

AEL

Observables vs phenology

Eigenvalue/vector decomposition

Physical interpretation

• Early vegetative (0-20)

- Dominated by surface scattering (flooded ground) with short vegetation
- Only two scattering mechanisms: surface and double-bounce
- Tillering (20-30)
 - Dominated by double-bounce: interaction between stems/tillers and flooded ground
- Advanced vegetative (30-55)
 - Linearly polarised backscatter (horizontal), due to doublebounce and differential extinction
- Maturation (80-100)
 - Approaching a random volume: high entropy and low anisotropy

C-band vs X-band

- Overall response similar to X-band
- One main difference:
 - At X-band the dominance of the double bounce around tillering phase starts before and ends quickly: stages 18-21
 - At C-band, however, it lasts from stage 20 to 30
 - Justification: size of the tillers in terms of the wavelength

Phenology retrieval: algorithm with quad-pol

- Identification of radar response for 4 phenological intervals:
 - Early vegetative (0-20)
 - Tillering (20-30)
 - Advanced vegetative (30-55)
 - Maturation (80-100)
- Reproductive and early maturation (55-80) are not available
- First proposal with 3 parameters: α_1 , *H*, *A*
- Rules based on physical interpretation

AEL

Phenology retrieval: results with quad-pol

Phenology retrieval: results with quad-pol

- Validation at parcel level:
 - The most retrieved value (mode) within each parcel is compared with ground campaign
 - Example for a parcel:

DoY – Acquisition	Not assigned	1	2	3	5	Total pixels
151 (2009)	8	1891	109	35	44	2087
175 (2009)	0	1	2078	8	0	2087
199 (2009)	297	76	104	1566	44	2087
223 (2009)	85	0	126	1874	2	2087
146 (2010)	66	1496	364	96	65	2087
170 (2010)	1	294	1587	205	0	2087
218 (2010)	2	0	2	2083	0	2087
266 (2010)	264	11	29	154	1629	2087
290 (2010)	133	59	2	72	1821	2087

PERCENTAGE OVER ASSIGNED PIXELS

1	2	3	5
91,0	5,2	1,7	2,1
0,0	99,6	0,4	0,0
4,2	5,8	87,5	2,5
0,0	6,3	93,6	0,1
74,0	18,0	4,8	3,2
14,1	76,1	9,8	0,0
0,0	0,1	99,9	0,0
0,6	1,6	8,4	89,4
3,0	0,1	3,7	93,2

GROUND DATA

Phenology
12
22
32
43
2
22
40
88
92+

- Complete statistics:

• 44 right estimates of 46 cases: 96% coincidence

	HH/VV ≈ 0 dB		
	Moderate to high correlation between HH and VV		
Early vegetative (0-20)	Phase difference between HH and VV ≈ 0		
	Freeman-Durden: Ratio of volume-to-ground scattering \approx -5 dB		
	Freeman-Durden: Odd-bounce > double-bounce (above 5 dB)		
Tilloring (20, 20)	Phase difference between HH and VV below -90 degrees		
Thering (20-30)	Freeman-Durden: Double-bounce > odd-bounce (above 5 dB)		
Advanced vog (20.55)	HH/VV > 6 dB		
Advanced veg. (30-55)	High correlation between the first two Pauli channels		
Maturation (80-100)	Freeman-Durden: Ratio of volume-to-ground scattering around or above 0 dB		

... and others with circular polarisation basis

Compact-pol observables

Cloude et al. [IEEEGRSL'12]

Phenology retrieval: algorithm with compact-pol

In quad-pol, anisotropy was used to discriminate the first and the last intervals. The same can be done with other parameters. For instance:

*Model-based decomposition proposed in Cloude et al. [IEEEGRSL'12]

First proposal with 3 parameters: α_s , m, p_V

Frascati, January 31, 2013

Phenology retrieval: results with compact-pol

Phenology retrieval: results with compact-pol

Validation at parcel level:

- Example for a parcel:

PARCEL A

RETRIEVAL RESULT: NUMBER OF PIXELS

DoY – Acquisition	Not assigned	1	2	3	5	Total pixels
151 (2009)	179	1761	142	5	0	2087
175 (2009)	15	0	2068	4	0	2087
199 (2009)	787	0	181	1105	14	2087
223 (2009)	454	6	158	1469	0	2087
146 (2010)	548	1013	525	1	0	2087
170 (2010)	537	146	1368	34	2	2087
218 (2010)	38	0	2	2045	2	2087
266 (2010)	1137	0	147	157	646	2087
290 (2010)	932	2	146	10	997	2087

PERCENTAGE OVER ASSIGNED PIXELS

GROUND DATA

1	2	3	5
92,3	7,4	0,3	0,0
0,0	99,8	0,2	0,0
0,0	13,9	85,0	1,1
0,4	9,7	90,0	0,0
65,8	34,1	0,1	0,0
9,4	88,3	2,2	0,1
0,0	0,1	99,8	0,1
0,0	15,5	16,5	68,0
0,2	12,6	0,9	86,3

Phenology	[
12	
22	[
32	
43	
2	[
22	[
40	
88	
92+	

- Complete statistics:
 - 44 right estimates of 46 cases: 96% coincidence
 - Same performance as quad-pol at parcel level, but "noisier" results at pixel level

Conclusions: answers to initial questions

- Could the ambiguities found with HHVV images be solved by full polarimetry? Yes
- What is the influence of frequency band (C vs X) on the polarimetric observables as a function of phenology?
 - Similar overall response for all observables
 - Some stages (e.g. tillering) are shifted due to wavelength sensitivity
- Can phenology be retrieved with a single Radarsat-2 image? Yes
- Is full polarimetry strictly required for such an application? What about compact-pol or conventional dual-pol?
 - **Compact-pol is enough** for this application
 - HHVH and VVHV provide two real observables (reflection symmetry):
 - Limited applicability:
 - Low backscatter at early vegetative
 - Saturation and reduced ranges afterwards

Outlook for rice

- More experiments including images at the reproductive phase should be conducted. Expected results:
 - Stage characterised by a smooth transition between vegetative and maturation at all observables
 Li et al. [CJRS'12] , Lopez-Sanchez et al. [IEEETGRS'12]
 - Phenology retrieval at the two borders may result complicated
- From the **application** point of view:
 - 24 days revisit time is too large:
 - Different passes (asc/desc) and beams should be combined to provide a shorter refresh rate
 - The success with compact-pol envisages the exploitation of RCM for this application

... but NESZ = -17 dB will complicate its performance.

Phenology retrieval for other crop types?

An equivalent experiment has been carried out in the framework of the ESA-funded **PolSAR-Ap project** (AO 1-6707/11/I/NB), using the **AgriSAR2009** campaign dataset

5 crop types:

- Cereals: barley, oat & wheat
- Canola
- Field pea

Phenology information:

- 1st June 31 August
- Numerical scales
- Updated every 7-10 days
- Records: [min,max]

Radarsat-2 images:

- 57 in total
- 20 used:
 - Restricted to 3 months
 - All beams (22-39 deg)

Phenology retrieval for other crop types?

- First conclusion: Polarimetry is relevant when phenological development entails morphological changes in the plants... it depends on the crop type
 - Cereals: OK for barley and wheat, not enough for oat
 - Compact-pol presents slightly lower performance than quad-pol
 - Conventional dual-pol (HHVH, VVHV) identifies less stages
 - Canola: HV is enough
 - Constant random structure but increasing amount (height) of vegetation volume
 - Pea: Polarimetry is not enough
 - Auxiliary information is required

