

→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

P-band Tomography imaging of tropical forest at 6 MHz bandwidth: capabilities for forest biomass and height estimation

Ho Tong Minh Dinh^{1,2}, Stefano Tebaldini¹, Fabio Rocca¹, Thuy Le Toan²

⁽¹⁾Dipartimento di Elettronica e Informazione Politecnico di Milano, Italy

⁽²⁾ Centre d'Études Spatiales de la Biosphère (CESBIO) Toulouse, France

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

Introduction

• Even at P-Band, Radar intensity tends to saturate for very high biomass density (> 300 t/ha) \Rightarrow Information about forest structure becomes crucial

By Airborne TropiSAR data, 3D P-band SAR Tomography shows :

Scattering contributions from about 30 *m* above ground exhibit high sensitivity to forest biomass value ranging *from 250 t/ha to 450 t/ha*.

Introduction

BIOMASS Tomographic Phase

Introduction

P-band SAR tomography

key tool to SEE through the forest

suitable long wavelength to penetrate the dense forest layer key indicator to tropical forest biomass

Bandwidth constraint: 6 MHz

A significant reduction of the number of looks A significant vertical and horizontal resolution loss

GOAL: Study the 6 MHz performance of radar signal scattering mechanisms which relate to the tropical forest biomass and height

Vertical resolution and look angle

Reducing bandwidth

6 MHz bandwidth: two different processing approaches have been considered

 Degrading the resolution of 125 MHz airborne data through linear filtering. (ONERA)

Advantage: fast Disadvantage: incident angle varying

Investigated site : Paracou, French Guyana

Tropical forest area

Period	August 2009
Bandwidth	125 MHz
Carrier frequency	P-Band
Vertical resolution	≈20 m

Data from TROPISAR by ONERA

2. Back projection of airborne tomographic data onto BIOMASS geometry. (Polimi)

Advantage: incident angle almost constant

Reducing bandwidth

6 MHz bandwidth: two different processing approaches have been considered

 Degrading the resolution of 125 MHz airborne data through linear filtering. (ONERA)

Parameter	Value
Aircraft height	≈ 0.4 km
Look angle	20° - 60 °
Central frequency	0.435 GHz
Maximum allowed bandwidth	6 MHz
Height ambiguity	> 100 m
Range resolution	25 m
Azimuth resolution	12.5 m
Range sampling	18 m
Azimuth sampling	5 m
Number of track	6
Baseline aperture	75 m

2. Back projection of airborne tomographic data onto BIOMASS geometry. (Polimi)

Parameter	Value
Satellite height	650 km
Look angle	25 °
Central frequency	0.435 GHz
Maximum allowed	6 MHz (<-50 dB at
bandwidth	+-3 MHz)
Height ambiguity	160 m
Range resolution	25 m
Azimuth resolution	12.5 m
Range sampling	4 m
Azimuth sampling	5 m
Number of track	8
Baseline aperture	4610 m (critical)

Implementation approach 2

Simulated scenario : backprojection of airborne tomographic data onto BIOMASS geometry

Preliminary issue with approach 1

Standard interferometric processing removes the phases associated with a constant elevation along the images. The local topography is not taken into account so that height measurements are not referred to the ground level.

Being the goal the exploration of the forest layer, the topographic contribution shall be removed.

Phase calibration

From multi-baseline to multi-layer

Complex reflectivity along cross-range (ξ) direction and signal along image index are related by a *Fourier Transform*.

$$y_n(r,x) = \int P(\xi,r,x) \exp\left(j\frac{4\pi}{\lambda r}b_n\xi\right) d\xi$$

The Guyaflux tower (camera)

SAR Tomography

Vertical backscatter distribution of 55 m tower

Multi-layer

Note: Height is always measured with respect to terrain elevation

SAR resolution cell

SAR Tomography resolution cell

Profile

125 MHz - HV channel

Relation to forest biomass

Airborne geometry

The backscattered power associated with the volume layer (about 30 m above the ground) is observed to exhibit the highest sensitivity to forest biomass, even for high biomass values (250-450 t/ha).

14

Relation to forest biomass

Spaceborne geometry

The backscattered power associated with the volume layer (about 30 m above the ground) is observed to exhibit the highest sensitivity to forest biomass, even for high biomass values (250-450 t/ha).

Tomography biomass inversion

Tomography airborne

Forest height

Algorithm : slc verical focusing

Relative error $|H_{tomogaphy} - H_{LiDAR}|/H_{LiDAR}$

The average value is 0.13 (13%)

The average value is 0.10 (10%)

Forest height

Algorithm : Fourier Transform

Airborne geometry

Spaceborne geometry

Forest height

Algorithm : Capon spectrum

Airborne geometry

Spaceborne geometry

Conclusions

- 1. Two approaches are presented for reducing 6 MHz bandwidth data-set. The backprojection SAR data on *spaceborne geometry* approach is so far *the most faithful simulation* for BIOMASS system in a tropical forest, at least to our knowledge.
- 2. The loss of vertical resolution from both approaches due to reducing bandwidth is evident but it is not critical.
 - Resolution is still significantly lower than forest height in tropical forests
- 3. Tomography-biomass relation: SAR Tomography was used to derive a 3D reconstruction of the Paracou forest site at 6 MHz. The 30 m layer was found to exhibit a correlation value with respect to ABG higher than 0.8 at 6 ha resolution for AGB values ranging from 250 t/ha to 450 t/ha.
- 4. The forest height estimation appears to be reliable for vegetation layers ranging from 20 m to 30-35 m. Standard deviation has been assessed in less than 4 m based on a pixel-to pixel comparison at 1 ha resolution.

Particular acknowledgement goes to Dr. Pascale Dubois-Fernandez, for the radar data-sets; and to Dr. Lilian Blanc for providing in-situ data.

Thanks for your attention!