→ POLINSAR 2013

The 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry

RCM Compact Polarimetry Applied to Watershed Study

Charbonneau, F.J. & Zidane, S.-E.

Canada Centre for Remote Sensing McNairn, H. & Merzouki, A. Agriculture and Agri-Food Canada

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

- RCM and ongoing CP projects
- Potential watershed monitoring with RCM
 - Soil moisture
 - Vegetation structure with CP-Insar
- Impact-of-non-circularity and noise floor - -

RCM: RADARSAT Constellation Mission esa

Italy

- In continuity of RADARSAT-1 & -2
- Three-satellite SAR mission
- In 10 SAR modes
 - C-Band
 - Single pol, linear dual-pol,
 Compact pol, exp Quad pol
 - Swath up to 500 km

Rapid Revisits & CCD

- Daily coverage of Canada's land and oceans
- Four day InSAR capability

Operational Mission Drivers

- Ecosystem Monitoring
- Disaster Management
- Maritime Surveillance

Natural Resources Ressources naturelles Canada Canada

Canada

RCM CP Simulator

_ 🗆 🗙 rcm_cp_V2 Select Folder .. \RS2 OK2774 PK36067 DK35372 FQ9 20081104 141726. **RCM Products** Ship Detection Low Noise 100m Low Resolution 100m Noise Floo, Medium Resolution 50m Parameters Specific, Medium Resolution 30m rate Stripmap 16m User De **High Resolution 5m** ng Window Very High Resolution 3m - Regular R(Ship Detection Rg Jua Spotlight **Dual VV/VH** 1- Select the containing folder 2 -Select the RCM product 3- Select one or more noise floor(s) RUN! 4 -Select the CP's derived products 5- Run

Inputs: RADARSAT-2 FQ/FQW/SQ/SQW

Noise floor: RCM specs or user defined

Output Products:

- 9 RCM modes
- RCM-CP:
 - \checkmark RH, RV, ϕ_{RHRV*} , RR, RL
 - ✓ Received Stokes vector
 - ✓ CP derived parameters
 - m, μ_{c} , δ , μ_{E} , SE, α_{s} , ρ & [Ps,Pd,Pv]
- RCM Dual
 - ✓ HH/HV et VV/VH
- Compatible with PCI and NEST lacksquare
 - Reads orbital info for orthorectification

Watershed Context

- Watershed management involves monitoring "parameters" that have impact on hydrology/hydrogeology
- "Parameters" where SAR is sensitive
 - Soil moisture/roughness
 - Trees (forest)
 - Agriculture crops: cereal (soft crop) and horticulture (hard crop)
 - Change detection (urban dev., wetland & crop type)

Soil Moisture

Natural ResourcesRessources naturellesCanadaCanada

Theoretical modeling

- No reconstruction of HH, VV and HV
- Adapt IEM directly to RH, RV, RL and RR
- Need to
 - Change the Fresnel coefficients
 - Change the field coefficients
 - Better take care of the multi-scattering component

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Natural ResourcesRessources naturellesCanadaCanada

First Approximation – $k_7 \sigma_{RM}$

First trial : Bare soil Feeding IEM with in situ

Defining a surface by σ_{rms} , L and a correlation function is always tricky. Since the uncertainty on these parameters is high, we need to be careful with interpretation of results

Natural Resources Ressources naturelles Canada

ϵ and σ_{rms} estimated from IEM (LUT Approach

Could have done better with multi-incidence and or multi-date (RCM = daily coverage)

Natural Resources Ressources naturelles Canada

Vegetation Structure CP-InSAR assessment

C-Band Facts for Vegetation

- Short vegetation biomass/density usually well assessed from the volumetric/depolarized component of Dual pol linear, Dual pol CL or full quad
- High biomass == saturation at C-Band
- What about characterization of the tree canopy when leaf off?
 - Single date gives info in some cases (Touzi et al. 2004)
 - Does adding the insar dimension bring new information?

CLYS

CP InSAR

- Limited @ C-band spaceborne
 - Height : not enough sensibility in $\Delta \phi$
 - Not interested doing DEM of the tree scattering center if we don't "see" the ground
 - Current data: RSAT-2
 - 24 days repeat pass = Temporal decorrelation
 - RCM baseline: 200 m orbital tube
- Nevertheless, can we look for structural info?

Database and Fieldwork: Kelowna, BC

AAFC Land Use Database

CCRS/AAFC Fieldwork 2007 & 2011

RADARSAT-2 Data and Products © MacDONALD,DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Natural Resources Ressources naturelles Canada

Canada

European Space Agency

esa

Why Okanagan Valley for CP-InSAR? esa

Coherence at C-Band

"Small" trees: prevent saturation
 Row spacing: Potential to "see" ground
 Horticulture: Spaced and organized crop
 Dry environment: Temporal coherence

Radarsat-2

• Fine quad

- Multi-year since 2008 (Mainly late summer/fall season)
- Multi-Incidence 20° to 45°
- Simulated to RCM-CP

esa

CP Intensity Signature

• Dense vegetation is quite boring at C-band

POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Natural Resources Ressources naturelles Canada Canada

European Space Agency

esa

CP-InSAR Coherence Examples

eesa

HD Apple (recent)

FQ5_Field #20

20121028_20121004

Canada

Baseline Effect

B_| = 126m

Cherry @ 26°

28 January - 1

Natural Resou where Canada

 $B_{||} = 164m$

→ POLINSAR 2013 28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Canada

Natural Resources Ressources naturelles Canada

1

28 January - 1 February 2013 | ESA-ESRIN | Frascati (Rome), Italy

Natural Resources Ressources naturelles Canada

Canada

Conclusion

CP potential for watershed

- Soil moisture estimation from CP will be possible. RL has a higher return on bare soil and is less affected by the noncircularity.
- Agriculture crop classification (presented at IGARSS'12).
- Change detection as good as linear dual pol configuration.
- CP Insar (from R2 data) is limited but 4 days repeat pass should bring some potential for structure characterization.

Acknowledgement

This project is supported by the Canadian Space Agency