Polarimetric Decompositions for Soil Moisture Retrieval from Vegetated Soils in TERENO Observatories

Thomas Jagdhuber¹, Irena Hajnsek^{1,2}, Konstantinos P. Papathanassiou¹

¹Microwaves and Radar Institute, Pol-InSAR Research Group, DLR ²Institute of Environmental Engineering, Earth Observation, ETH Zurich

International Workshop on Science and Application of SAR Polarimetry and Polarimetric Interferometry Frascati, 31st of January 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

thomas.jagdhuber@dlr.de

What do We need for a Soil Moisture Retrieval under Vegetation with Polarimetric SAR Remote Sensing?

Algorithm Requirements

- Physically-based retrieval approach
- Analytically solvable inversion algorithm with reasonable computational costs
- → High transferability to different areas of interest / no use of a priori knowledge

Goal of Scientific Research

Estimate soil moisture under vegetation cover using polarimetric SAR remote sensing techniques @ L-band and validate with in situ measurements.

Experimental Campaigns - TERENO 2011 / 2012

DLR's Novel SAR Sensor: F-SAR

- ✓ Frequency: L-band
- ✓ Fully polarimetric (HH/HV/VH/VV)
- Spatial Resolution (r/a):
 2mx0.6m
- Date: KW 21-22, KW 19-21
 (23.5.-7.6.2011, 10-23.5.2012)

TERENO Observatories

- Bavarian Alps: Ammer KIT
- → Harz: Bode UFZ/WESS
- → Eifel: Rur FZ Jülich
- → DEMMIN: Peene DLR/GFZ

7 Ground Measurements

- Conducted by the research institutes of the observatories.
- DLR supported for the Ammer and the Bode catchment in 2011.

Test site – DEMMIN / Peene Catchment Flight strips of F-SAR: 11 x 4 km (E-W), 27 x 4 km (N-S)

Field measurements by DLR/GFZ: Soil moisture , vegetation (height, phenology,

Fest Site – Harz / Bode Catchment

Flight strips of F-SAR: 11 x 4 km (E-W), 6 x 4km (N-S) Field measurements by UFZ/WESS: Soil moisture, Vegetation (height, phenology, biomass)

Fest Site – Eifel / Rur Catchment

Triangular Flight Configuration

Measurement areas: 5 x 3 km (3) and 10 x3 km

Field Measurements: Soil Moisture, Vegetation

Soil Moisture Network (grassland (Rollesbroich)) Mobile FDR probes (agriculture (Merzenhausen))

Experimental Campaign – AgriSAR 2006

Agricultural parameter estimation over an entire vegetation growth period (April-August)

16 fully polarimetric Radar data acquisition flights with the E-SAR system at L-band for two flight headings (E-Wtrack, N-S-track) and in situ measurements on test fields for soil moisture, soil roughness, vegetation height, phenology, biomass,...

E-W-Track 200 LMU aht **Soil Moisture Station /egetation** h

Scheme of Hybrid Decomposition and Inversion for Soil Moisture under Vegetation Cover

Physically Constrained Hybrid Polarimetric Decomposition

Basic Principle of Hybrid Polarimetric Decomposition

Modification of Hybrid Decompositions – Generalized Volume Scattering of Oriented Spheroids

Volume modelling of a cloud of **uniformly shaped** (A_p) spheroids with a **3D-distribution of orientations** (ψ, τ, χ) in space

Generalized Vegetation Scattering Volume

$$T_{V} = \frac{1}{1+A_{p}^{2}} \begin{pmatrix} \dot{e} \\ \dot{e} \\$$

Retrieval of the Ground Scattering Components

Btatteiting for the badi some grouted ($f_{c} \rho f_{g}$) ponents (a_{d}, a_{s})

Physically meaningful separation into ground components

$$a \hat{i} [0, p/4] \quad \text{Surface scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \text{Dihedral scattering} \quad \square \quad a \hat{i} [p/4, p/2] \quad \A = \hat{i} [p/4, p/2] \quad A = \hat{i}$$

Orthogonality condition

Scheme of Hybrid Decomposition and Inversion for Soil Moisture under Vegetation Cover

Determination of Mean e_{s} -Level of Scene (α_{1} -criterion)

Pixelwise Refinement of e_s -Level (α_{min} -criterion)

Scheme of Hybrid Decomposition and Inversion for Soil Moisture under Vegetation Cover

Soil Moisture Inversion from Surface Scattering Component

Moisture Monitoring along an Entire Agricultural Growth Cycle for AgriSAR 2006 = Mask for forested + urban areas

Relidation of Soil Moisture Inversion under Vegetation Cover

Moisture Monitoring within TERENO Observatories for 2011

DLR

Moisture Monitoring within TERENO Observatories for 2012

Summary and Outlook

- Inversion of soil moisture under various agricultural vegetation is feasible with very high inversion rates (>98%) using hybrid decomposition and inversion techniques on fully polarimetric SAR data @ L-band.
 - High-resolution (compared to passive sensors) and wide area (compared to field-based techniques) mapping is possible.
 - → Monitoring period covers the entire growing season.
- Validation with ground-based sensors (FDR, TDR, Wireless SoilNets) revealed a well agreement with the SAR-based moisture estimates resulting in an RMSE from 5.7vol.% to 7.9vol.% including the growth season and a variety of crop types in different phenological stages.
- → Further investigations on the retrieval algorithm towards operationality.
 - \neg Oriented vegetation volume scattering (variable Ap and $\Delta \psi$),
 - → Robust volume type selection,
 - → Residual incidence effects (multi-angular data).
- Application adaption to forested areas for a spatially continuous monitoring strategy.
- Algorithm implementation for upcoming, space-borne, long-wavelength SAR missions (ALOS-2, Tandem-L) heading towards a global monitoring strategy.

Thank you very much for your attention!