

> POLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione

Assimilation of Distributed Targets and PS Information for the Monitoring of Polarimetric SAR Systems

Lorenzo Iannini

POLIMI / TU Delft

Andrea Monti Guarnieri, Stefano Tebaldini POLIMI

Project supported by Agenzia Spaziale Italian (ASI), project -1080 - SAR data Calibration and Validation by Natural Targets

Outline

Introduction

- Traditional polarimetric calibration
- PS-based technique
 - Model
 - > Algorithm
 - Integration with external data
 - Calibrated data
 - Distributed targets
- Results on RS2 dataset
- Conclusions

Introduction **SAR** calibration

□ SAR calibration aims to:

- Remove the radiometric and polarimetric distortion from the target signatures
- SAR instrument health status monitoring
 - T/R Modules, Antenna pattern, Power losses

System distortion (without Faraday)

$$\begin{bmatrix} M_{HH} & M_{VH} \\ M_{HV} & M_{VV} \end{bmatrix} = Ae^{j\phi} \cdot \begin{bmatrix} 1 & \delta_2 \\ \delta_1 & f_1 \end{bmatrix} \cdot \begin{bmatrix} S_{HH} & S_{VH} \\ S_{HV} & S_{VV} \end{bmatrix} \cdot \begin{bmatrix} 1 & \delta_3 \\ \delta_4 & f_2 \end{bmatrix}$$
RECEIVE MATRIX TRANSMIT MATRIX

- **6 COMPLEX PARAMETERS**
 - **IMBALANCES:** f_1, f_2 **Typical Requirement: 0.2 dB**
 - CROSS-TALKS (CTs): $\delta_1, \delta_2, \delta_3, \delta_4$ Typical Requirement: < -30 dB

Introduction **Polarimetric Calibration**

Current polarimetric calibration approaches exploit:

- A. Network of calibrated active/passive reflectors
 - PARC, corners (3 or more) •

B. A Distributed Target (DT)

PollnSAR 28 Jan -1 Feb 2013

ESA ESRIN

Introduction Polarimetric Calibration

ISSUES

- A calibration site is expensive to be deployed and then maintained for the whole mission lifetime. Moreover it demands for dedicated acquisitions that can interfere with the mission operations.
- Approaches based solely on DTs (no point calibrators) can provide only partial information

Introduction Proposed PScal approach

IDEA

- Exploit multiple-image information
- Use the stable targets (Permanent Scatterers) on the scene as if they were calibrated point targets (PT)

PS-Based Technique **PS model**

7

PS-Based Technique **PS model**

8

PS-Based Technique PS Model

$$\mathbf{y}_{i,p} = \begin{bmatrix} y_{hh}(i,p) \\ y_{hv}(i,p) \\ y_{vh}(i,p) \\ y_{vv}(i,p) \end{bmatrix} \cong e^{j\varphi(i,p)} \cdot \mathbf{H}_{i} \cdot \underbrace{\begin{bmatrix} S_{hh}(p) \\ S_{hv}(p) \\ S_{vv}(p) \end{bmatrix}}_{\mathbf{y}_{vv}(i,p) = \mathbf{W}_{i,p}} \mathbf{Thermal + Model + a}$$

Clutter model

Geometrical and temporal decorrelation not accounted

 $E[\mathbf{w}(i_1,p)\mathbf{w}(i_2,p)^*] = \mathbf{0}$ with $i_1 \neq i_2$

> ccG behaviour: $\mathbf{w}_{i,p} \sim CN(\mathbf{0}, \mathbf{C}_p)$ with

$$C_{p} = \begin{bmatrix} v_{hh}(p) & \kappa_{hhhv}(p)^{*} & \kappa_{hhvv}(p)^{*} \\ \kappa_{hhhv}(p) & v_{hv}(p) & \kappa_{hvvv}(p)^{*} \\ \kappa_{hhvv}(p) & \kappa_{hvvv}(p) & v_{vv}(p) \end{bmatrix}$$

Covariances dependent on PS and stationary along the stack

9

□ Intrinsic Ambiguity $\mathbf{H}_i \leftrightarrow \mathbf{s}_p, \mathbf{C}_p$

$$\mathbf{y}_{i,p} = e^{j\varphi(i,p)}\mathbf{H}_i \cdot \left(\mathbf{s}_p + \mathbf{w}_{i,p}\right) + \mathbf{n}_{i,p} = e^{j\varphi(i,p)}\mathbf{H}_i \cdot \mathbf{K} \cdot \mathbf{K}^{-1} \left(\mathbf{s}_p + \mathbf{w}_{i,p}\right) + \mathbf{n}_{i,p}$$

3 by 3 matrix **K**

IGARSS 22-27 July 2012 - Munich (GER)

PS-Based Technique PS Model

$$\mathbf{y}_{i,p} = \begin{bmatrix} y_{hh}(i,p) \\ y_{hv}(i,p) \\ y_{vh}(i,p) \\ y_{vv}(i,p) \end{bmatrix} \cong e^{j\varphi(i,p)} \cdot \mathbf{H}_{i} \cdot \underbrace{\begin{bmatrix} S_{hh}(p) \\ S_{hv}(p) \\ S_{vv}(p) \end{bmatrix}}_{\mathbf{S}_{p}} + \underbrace{\begin{bmatrix} w_{hh}(i,p) \\ w_{hv}(i,p) \\ w_{vv}(i,p) \end{bmatrix}}_{\mathbf{S}_{p}} + \underbrace{\begin{bmatrix} n_{hh}(i,p) \\ n_{hv}(i,p) \\ m_{vh}(i,p) \\ n_{vv}(i,p) \end{bmatrix}}_{\mathbf{S}_{p}} + \underbrace{\begin{bmatrix} w_{hh}(i,p) \\ w_{hv}(i,p) \\ w_{vv}(i,p) \end{bmatrix}}_{\mathbf{S}_{p}} + \underbrace{\begin{bmatrix} w_{hh}(i,p) \\ w_{hv}(i,p) \\ m_{vv}(i,p) \end{bmatrix}}_{\mathbf{S}_{p}} + \underbrace{\mathbf{W}_{i,p}}_{\mathbf{S}_{p}}$$

Clutter model

Geometrical and temporal decorrelation not accounted

 $E[\mathbf{w}(i_1,p)\mathbf{w}(i_2,p)^*] = \mathbf{0}$ with $i_1 \neq i_2$

> ccG behaviour: $\mathbf{w}_{i,p} \sim CN(\mathbf{0}, \mathbf{C}_p)$ with

$$C_{p} = \begin{bmatrix} v_{hh}(p) & \kappa_{hhhv}(p)^{*} & \kappa_{hhvv}(p)^{*} \\ \kappa_{hhhv}(p) & v_{hv}(p) & \kappa_{hvvv}(p)^{*} \\ \kappa_{hhvv}(p) & \kappa_{hvvv}(p) & v_{vv}(p) \end{bmatrix}$$

Covariances dependent on PS and stationary along the stack

Intrinsic Ambiguity
$$\mathbf{H}_i \leftrightarrow \mathbf{s}_p, \mathbf{C}_p$$

 $\mathbf{y}_{i,p} = e^{j\varphi(i,p)}\mathbf{H}_i \cdot (\mathbf{s}_p + \mathbf{w}_{i,p}) + \mathbf{n}_{i,p} = e^{j\varphi(i,p)}\mathbf{H}_i \cdot \mathbf{K} \cdot \mathbf{K} \cdot \mathbf{K}^{-1}(\mathbf{s}_p + \mathbf{w}_{i,p}) + \mathbf{n}_{i,p}$
3 by 3 matrix \mathbf{K}

IGARSS 22-27 July 2012 - Munich (GER)

PS-Based Technique

PS-Based Technique Resolving the ambiguity

PS-Based Technique Estimation of ambiguity by means of DT

 \blacktriangleright K can be resolved up to a gain A_0 and an imbalance complex factor f_0 common to all the stack estimates

Data calibration is still unfeasible

 Channels are decoupled but still hampered by imbalance

$$S_{HH}^{cal} \cong A_0 \cdot S_{HH}$$
$$S_{HV}^{cal} \cong A_0 f_0 \cdot S_{HV}$$
$$S_{VH}^{cal} \cong A_0 f_0 \cdot S_{VH}$$
$$S_{VH}^{cal} \cong A_0 f_0 \cdot S_{VH}$$

A complete temporal monitoring of the distortion is achievable

PS stability is able to interlink phase and amplitudes of the distortion alongside the stack

$$\left[\frac{A}{A_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \delta_1, \frac{\delta_2}{f_0}, \delta_3, \frac{\delta_4}{f_0}\right]$$

Application to RS2 **Case study**

□ RADARSAT-2 Dataset

Mode	Fine Quad-Pol
Beam	FQ9
Angle	28°-29.8°
Gr. Res.	10.5 – 11.1 m
Width	25 x 25 km

10 images	2008-Apr-12 to 2008-Dec-08		
16 images	2010-Feb-13 to 2011-Mar-28		

PollnSAR 28 Jan -1 Feb 2013

ESA ESRIN

100

1500

2000

2500

POLITECNICO DI MILANO 🎽 Dipartimento di Elettronica e Informazione

Application to RS2 **DT** estimates

- Constrained to areas which feature orientation symmetry.
- Supervised selection of the most fitted areas

Quegan technique is adopted

Average values throughout the dataset

	$\delta_1 \text{ [dB]}$	δ_2/f_1 [dB]	δ_3 [dB]	δ_4/f_2 [dB]
Mount 1	-46.8	-49.3	-51.5	-52.1
Mount 2	-43.9	-43.2	-47.7	-46
Fields	-44.6	-45.4	-43	-42.9

Application to RS2 PoIPS detected

Details

PS-Based Technique Estimation of ambiguity by means of DT

Example of the calibration effects (on a single imagette)

Application to RS2 Amplitude stability on imagettes

Application to RS2 Amplitude stability on imagettes

Application to RS2 Phase stability on imagettes

Application to RS2 CT results

- CROSS-TALKS
 - Hard test for PolPSCal
 - The number and quality of PSs must provide higher stability than the RS2 CT level (< - 40 dB) to be effective

- 500 PS Low Quality (~ SCR > 8 dB)
- 5000 PS High Quality (~ SCR > 12 dB)
- --- Quegan technique

Conclusions

An algorithm for a joint radiometric and polarimetric calibration based on the natural stable scatterers in the scene has been proposed.

□ Full calibration requires a single calibrated image out of the whole stack.

- System distortion fluctuations (temporal monitoring) can be assessed without a calibrated target just through assimilation with DT
 - Technique stability was tested on a 26-images RS2 dataset registering values of stability below 0.3 and 0.2 dB (3σ) for radiometric gain and imbalances.
 - Cross-talk estimation also managed to provide good results. The 40 dB level was indeed effectively achieved by high quality imagettes.
- Extension to other systems is indeed feasible. The potential for carrying out Faraday compensation seems for instance one the most promising directions for further research

Thank you

Summary

Stack

Full temporal monitoring of the distortion (only partial data calibration)

PS-Based Technique **PS detection**

LEGEND

- DT Distributed target
- PS Permanent Scatterer
- FRA Faraday rotation angle
- СТ Cross-talk

Generic distortion:
$$\mathbf{M} = \mathbf{R}_{\text{Tot}}^T \cdot \mathbf{S} \cdot \mathbf{T}_{\text{Tot}}$$

 $\begin{bmatrix} M_{HH} & M_{VH} \\ M_{HV} & M_{VV} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{HH} & S_{VH} \\ S_{HV} & S_{VV} \end{bmatrix} \cdot \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix}$

$$\alpha = \frac{r_{22}}{r_{11}} \frac{t_{11}}{t_{22}}, \quad u = \frac{r_{21}}{r_{11}}, \quad v = \frac{t_{21}}{t_{22}}, \quad w = \frac{r_{12}}{r_{22}}, \quad z = \frac{t_{12}}{t_{11}} \quad \left(\mathbf{T}_{\mathbf{Tot}}^T \otimes \mathbf{R}_{\mathbf{Tot}}^T \right) \cdot \mathbf{P} \cdot \mathbf{B} \quad \text{with } \mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \underset{\text{matrix}}{\text{ambig.}}$$

Sconarios	DT Mon	nitoring	DT+PS monitoring		
Scenarios	Capabilities	Issues	Capabilities	Issues	
Null FRA Full model: $A, f_1, f_2, \delta_1, \delta_2, \delta_3, \delta_4$	The parameter set $\{f_1/f_2, \delta_1, \delta_2/f_1, \delta_3, \delta_4/f_2\}$ is unambiguously retrieved.	An unknown radiometric and phase factor between between the different polarizations must be accounted. It is related to $f_{1,2}$, which can be non- stationary along time.	The $f_{1,2}$ uncertainty is resolved up to a complex factor common for the whole stack. Full temporal system monitoring and Intra- stack calibration are now possible	Inter-stack data processing still requires the common scale factor information that can only be provided by external calibrators.	
Non-null FRA CTs reciprocal: $A, f_1, f_2, \delta_1 = \delta_3, \delta_2 = \delta_4, \Omega$	All the parameters can be retrieved with accuracy depending on the FRA and on the imbalance ratio phase (see section ref:sec).	When Faraday is null or close to 0 or the imbalance ratio phase is $\approx \pm \pi/2$ the quality of the estimates is poor.	All the stack distortion can be retrieved when at least one DT estimate has good quality.	When good quality DT estimates cannot be found the user should refer to the previous scenario.	
Non-null FRA Full model: $A, f_1, f_2, \delta_1, \delta_2, \delta_3, \delta_4, \Omega$	The distortion model is intrinsically ambiguous. The DT-based parameter set $\{\alpha, u, v, w, z\}$ can be nonetheless computed. The parameters become functions of Ω as well.	Nor system monitoring nor accurate Faraday estimation is possible.	Improvements are eventually possible only if additional model constraints are accounted, such as slow distortion fluctuations along the time-series (hint for future research).	To be investigated.	

DT information

PS-Based Technique Estimation of ambiguity by means of DT

K can be resolved up to an imbalance factor

$$\mathbf{K}_{\text{res}} = A_0 \begin{bmatrix} 1 & & \\ & f_0 & \\ & & f_0^2 \end{bmatrix} \qquad \mathbf{K}$$

 $\mathbf{X}' = \mathbf{K} \cdot \mathbf{K}_{res}$ is also a valid solution for \mathbf{K}

 \succ So that the estimated PDMs are:

$$\widetilde{\mathbf{H}}_{i} = \widehat{\mathbf{H}}_{i} \cdot \mathbf{K}^{-1} = \frac{A}{A_{0}} \cdot \begin{bmatrix} 1 & \delta_{2} + \delta_{4} & \delta_{2}\delta_{4} \\ \delta_{1} & f_{1} + \delta_{1}\delta_{4} & \delta_{4}f_{1} \\ \delta_{3} & f_{2} + \delta_{2}\delta_{3} & \delta_{2}f_{2} \\ \delta_{1}\delta_{3} & (\delta_{1} + \delta_{3})f_{2} & f_{1}f_{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & & \\ & f_{0}^{-1} & \\ & & f_{0}^{-2} \end{bmatrix}$$

A complete temporal monitoring of the distortion is achievable

$$\widetilde{\mathbf{H}} \Longrightarrow \frac{\underline{A}}{A_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \delta_1, \frac{\delta_2}{f_0}, \delta_3, \frac{\delta_4}{f_0}$$

> PS stability is able to interlink phase and amplitudes of the distortion alongside the stack

Data calibration is still unfeasible

Channels are decoupled but still hampered by imbalance

$$M_{HH}^{cal} \cong A_0 \cdot M_{HH}$$
$$M_{HV}^{cal} \cong A_0 f_0 \cdot M_{HV}$$
$$M_{VH}^{cal} \cong A_0 f_0 \cdot M_{VH}$$
$$M_{VH}^{cal} \cong A_0 f_0 \cdot M_{VH}$$

POLITECNICO DI MILANO 🎽 Dipartimento di Elettronica e Informazione

PolPSCal Technique **PS detection**

□ Theoretical performance

PS-Based Technique Calibration by means of a known PDM

Simulated performance using an image calibrated without error

Measured through Maximum Normalized Error (Wang-Ainsworth-Lee*)

[*] Yanting Wang; Ainsworth, T.L.; Jong-Sen Lee; , "Assessment of System Polarization Quality for Polarimetric SAR Imagery and Target Decomposition," TGRS, May 2011

Results PoIPSCal

CROSS-TALKS

- Hardest test for PolPSCal -> The number and quality of PSs must provide higher precision than the RS2 CT level (< - 40 dB) to be effective</p>
- Furthermore, the nomalization step must prove to be effective enough in the removal of the ambuigity that impacts notably on the out-of-diagonal PDM elements.

PolPSCal Technique Normalization

Without calibrator

Exploit information provided by traditional techniques

$$\mathbf{H}_{i_{0}} = A_{i_{0}} \cdot \mathbf{H}_{i_{0}}^{DT} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & f_{2}(i_{0}) & 0 \\ 0 & f_{2}(i_{0}) & 0 \\ 0 & 0 & f_{2}^{2}(i_{0}) \end{bmatrix} = \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{K}$$

$$\mathbf{H}_{i_{0}} = \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{K}$$

$$\mathbf{H}_{i_{0}} = \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{K}$$

$$\mathbf{H}_{i_{0}} = \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}_{i_{0}}^{PS} \cdot \mathbf{H}$$

> We can retrieve from each PDM the distortion parameters:

$$\hat{\mathbf{H}}_{i} \rightarrow \frac{A}{A_{0}}, \frac{f_{1}}{f_{0}}, \frac{f_{2}}{f_{0}}, \delta_{1}, \frac{\delta_{2}}{f_{0}}, \delta_{3}, \frac{\delta_{4}}{f_{0}}$$

Apart from a constant scale factor, we are now able to monitor the amplitude and phase trends of the imbalances

PolPSCal Technique Theoretical Performance

SVD provides LS optimization for H and S

$$\mathbf{z}_{i,p} = e^{-j\phi(i,p)} \mathbf{y}_{i,p}$$
$$\hat{\mathbf{s}}_{p}, \hat{\mathbf{H}}_{i} = \operatorname*{argmin}_{\mathbf{s}_{p},\mathbf{H}_{i}} \left(\sum_{i} \sum_{p} \left\| \mathbf{z}_{i,p} - \mathbf{H}_{i} \mathbf{s}_{p} \right\| \right)$$

Approximate theoretical performace can be derived

- > Unbiased for SCR $\rightarrow \infty$
- > Covariance: $\mathbf{C}_{\mathbf{H}}(n) = E\left[\operatorname{vec}\left(\hat{\mathbf{H}}_{n} \mathbf{H}_{n}\right) \cdot \operatorname{vec}\left(\hat{\mathbf{H}}_{n} \mathbf{H}_{n}\right)^{H}\right]$

$$=\kappa \left[\sum_{p} \sum_{i} \left(\mathbf{s}_{p}^{*} \otimes \mathbf{H}_{i}^{H} \right) \Gamma_{i,p} \left(\mathbf{s}_{p}^{*} \otimes \mathbf{H}_{i}^{H} \right)^{H} \right] \kappa^{H} + \sum_{p} \left(\mathbf{S}_{inv}^{T} \mathbf{s}_{p}^{*} \otimes \mathbf{I}_{[4\times4]} \right) \Gamma_{n,p} \left(\mathbf{S}_{inv}^{T} \mathbf{s}_{p}^{*} \otimes \mathbf{I}_{[4\times4]} \right)^{H} + 2 \operatorname{Re} \left\{ \kappa \sum_{p} \left(\mathbf{s}_{p}^{*} \otimes \mathbf{H}_{n}^{H} \right) \Gamma_{n,p} \left(\mathbf{S}_{inv}^{T} \mathbf{s}_{p}^{*} \otimes \mathbf{I}_{[4\times4]} \right)^{H} \right\}$$

The same that would be recursively attained by the estimators

32

$$\hat{\mathbf{H}}_{i} = \sum_{p} \mathbf{z}_{i,p} \hat{\mathbf{s}}_{p} \left(\sum_{p} \hat{\mathbf{s}}_{p} \hat{\mathbf{s}}_{p}^{H} \right)^{-1}$$
$$\hat{\mathbf{s}}_{p} = \left(\sum_{i} \hat{\mathbf{H}}_{i}^{H} \hat{\mathbf{H}}_{i} \right)^{-1} \sum_{i} \hat{\mathbf{H}}_{i}^{H} \mathbf{z}_{i,p}$$

PolPSCal Technique Theoretical Performance

SVD provides LS optimization for H and S

$$\mathbf{z}_{i,p} = e^{-j\phi(i,p)} \mathbf{y}_{i,p}$$
$$\hat{\mathbf{s}}_{p}, \hat{\mathbf{H}}_{i} = \operatorname*{argmin}_{\mathbf{s}_{p},\mathbf{H}_{i}} \left(\sum_{i} \sum_{p} \left\| \mathbf{z}_{i,p} - \mathbf{H}_{i} \mathbf{s}_{p} \right\| \right)$$

Approximate theoretical performace can be derived

- \blacktriangleright Unbiased for SCR $\rightarrow \infty$
- > Covariance: $\mathbf{C}_{\mathbf{H}}(n) = E \left[\operatorname{vec}(\hat{\mathbf{H}}_{-} \mathbf{H}_{-}) \cdot \operatorname{vec}(\hat{\mathbf{H}}_{-} \mathbf{H}_{-})^{H} \right]$

```
The same that would be
recursively attained by the
estimators
```

$$\hat{\mathbf{H}}_{i} = \sum_{p} \mathbf{z}_{i,p} \hat{\mathbf{s}}_{p} \left(\sum_{p} \hat{\mathbf{s}}_{p} \hat{\mathbf{s}}_{p}^{H} \right)^{-1}$$
$$\hat{\mathbf{s}}_{p} = \left(\sum_{i} \hat{\mathbf{H}}_{i}^{H} \hat{\mathbf{H}}_{i} \right)^{-1} \sum_{i} \hat{\mathbf{H}}_{i}^{H} \mathbf{z}_{i,p}$$

- \succ N_I is not influent for estimation (it is only important for detection)
- PS density and quality determine:

$$\Delta_{[dB]}MSE \cong \Delta_{[dB]}SCR$$

 $\Delta_{[dB]}MSE \cong -\Delta_{[dB]}N_p$

Not straightforward Simplification: $Tr\{.\} \approx Total MSE$ / **H** = **I**, $\Gamma_{i,p} = \Gamma_W$ $\operatorname{Tr}\{\mathbf{C}_{\mathbf{H}}\} = \left(\frac{1}{N_{I}} + 2\right) \cdot \operatorname{Tr}\{\mathbf{S}_{inv}\} (\operatorname{Tr}\{\Gamma_{W}\} - \sigma_{n}) + \operatorname{Tr}\{\mathbf{S}_{inv}\} \operatorname{Tr}\{\Gamma_{W}\}$

Impact of the number of images N_{I} and of the clutter to thermal noise ratio

Dependence on the number of targets N_p and on the SCR

Estimation Step Theoric performance

PS		Clutter (temporally u	Thermal et al.		
P _{hh} [dB]	P _{hv} [dB]	P _{vv} [dB]	coher. c _{HH,VV}	$c_{HV,HH} = c_{HV,VV}$	NESZ [dB]
0	-7	1.5	0.2·exp(j·20°)	0	-15

Estimation Step Theoric performance – C-band (no Faraday)

