

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Exploring MERIS Products

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | | NMCI | Cork, Ireland

Contents

- MERIS products
 - MERIS Instrument
 - Accessibility MERIS Data
- BEAM-VISAT basic functions
 - Short Introduction
 - Basic Imaging
 - BEAM Exercises:
 - Exercise 1: Analysis of MERIS image contents
 - Exercise 2: Display of MERIS scenes
 - Data:
 - MER_RR_1PRBCM20100628_092440_000003972090_00394_43534_0023.N1
 - MER_RR__2PRBCM20100628_092440_000003972090_00394_43534_0007.N1

ENVISAT satellite

Photo: ESA

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

MERIS spectral bands

		Band	Band centre (nm)	Bandwidth (nm)	Primary Use
	V I S I B L E	1	412.5	10	Yellow substance and pigments detritus
		2	442.5	10	Chlorophyll absorption maximum
		3	490	10	Chlorophyll and other pigments
		4	510	10	Suspended sediment, red tides
		5	560	10	Chlorophyll absorption minimum
		6	620	10	Suspended sediment
		7	665	10	Chlorophyll absorption and fluo. reference
		8	681.25	7.5	Chlorophyll fluorescence peak
		9	708.75	10	Fluo. Reference, atmospheric corrections
	Ι	10	753.75	7.5	Vegetation, cloud
	N F	11	760.625	3.75	Oxygen absorption R-branch
	r R	12	778.75	778.75 15 Atmospher	Atmosphere corrections
	Α	13	865	20	Atmosphere corrections
	R	14	885	10	Vegetation, water vapour reference
	D	15	900	10	Water vapour, land

MERIS daily acquisition

CQUISITION DATE: 20060512, ORBITS 21943 - 21956

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

esa

BROCKMAN

MERIS daily acquisition

COUISITION DATE: 20060512, @reats 219248 - 219462

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BROCKMAN

BEAUFORT Researciu

MERIS daily acquisition

COUISITION DATE: 20060518, @RBITS 219983 - 219983

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BROCKMAN

BEAUFORT Researciu

MERIS products

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Data availablilty and access

- RR
 - ESA-MERCI (Archiv)
 - ftp access
- FR(S)
 - EOLI-SA (Archiv)
- Access:
 - ESA-Merci & ftp: Cat-1 Fast Registration
 - EOLI-SA: Cat-1 proposal
- Costs:
 - FTP: 0€
 - DVD: 10 € (cost of reproduction)

Data access www.earth.esa.int

BEAUFORT

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

MERIS RR archive

version 2.0,3 - user odermatt - 2012-09-20 14:15 | Home | Query Products | Query Sites | Product Orders Manager | Change Password | RSS | Logout | Help

Query Products

merci

Expand to Advanced

selec

	Results 1 - 7 of 7 matching products. (0.03 seconds)				
t	#	Preview	Product Name		
	1	Quicklook	MER_RR1PRLRA20120405_010000_000026213113_00218_52818_9886.N1.gz		
	2	Quicklook	MER_RR1PRLRA20120405_042027_000026213113_00220_52820_0018.N1.gz		
	3	Quicklook	MER_RR1PRLRA20120405_060040_000026213113_00221_52821_0028.N1.gz		
	4	Quicklook	MER_RR1PRLRA20120406_020322_000026213113_00233_52833_0161.N1.gz		
	5	Quicklook	MER_RR1PRLRA20120407_012630_000026243113_00247_52847_0304.N1.gz		
	6	Quicklook	MER_RR1PRLRA20120407_062710_000026243113_00250_52850_0330.N1.gz		
	7	Quicklook	MER_RR1PRLRA20120408_022952_000026243113_00262_52862_0643.N1.gz		
Select All					

Download Selected Results Order Bulk Download via FTP

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

http://merci-srv.eo.esa.int/merci

- Enables quick download of the full 2002-2012 MERIS RR archive
- Download of single full orbits •
- Mass download via ftp
- Subsetting by area

Documentation

http://earth.eo.esa.int/pcs/envisat/meris/documentation/

ERS	Envisat	ALOS-ADEN		
PCS Home				25-Aug-2013
MERIS	 MERIS Technical Doc processors MEGS 81 	uments - Documentation	applicable to the	Documentation
Documentation	equivalent operationa	al processor IPF 6		MERIS 3rd Reprocessing
MERIS Calibration	 MERIS 3rd data re 	processing documentation		Meris Validation Team
MERIS global maps Performance Reports PCS Site Map Search: go Advanced Search Glossary FAQ Contact us Help on	 MERIS 3rd data re MERIS 3rd data re MERIS 3rd d MERIS 3rd d MERIS 3rd d MERIS 3rd d MERIS 3rd d MERIS product Sp Algorithm Theoreti Table with A Detailed Processin DPM L1 DPM L1 DPM L2 Reference Model a 2 processing Ocean RMD Specification	processing documentation ata reprocessing - Reprocess ata reprocessing - Validation ata reprocessing - Validation ata reprocessing - Validation ecifications ical Basis Documents - ATBD G Model and Radiative Transfer Model Reference Model for MERIS L n of the scientific contents of the scientific contents of the scientific contents of the scientific contents of	sing Changes sing Changes Synthesis Report Report Synthesis description for MERIS Level evel 2 Processing of the MERIS L1b & L2	
	MERIS instrument	ols used to generate the L2 / calibration, Ludovic Bourg ar	Auxiliary Data Products nd Steven Delwart, 2012	

MERIS Product Quality Reporting

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

MERIS Product layers in BEAM

- Bands
 - contains all measured spectral/geophysical and quality raster datasets of a product (mandatory)
- Tie-point grids
 - contains all tie-point grid raster datasets (16x16 RR Pixels)
- Flag coding
 - contains flag coding metadata for quality flags datasets
- Metadata
 - contains additional metadata

MERIS products

BEAUFORT

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

MERIS L1B product

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

MERIS L2 product

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1: Analyse MERIS images content

Open *.N1 or *.dim products in BEAM-VISAT

[1] L2_of_MER_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001 - [)					
File	<u>E</u> dit <u>V</u> iew <u>A</u> nalysis	<u>T</u> ools <u>W</u> indow	Help		
₿.	New Product	Strg+N	进 🖱 👃 😋 🖳 φ,λ		
.	New Time Series		고 무 오		
6	Open Product	Strg+O	00003182033_00304_14887_0001		
	Open Session	Strg+Umschalt+O			
8	<u>R</u> eopen	•			
8	OPeNDAP Access				
8	Product Grabber	Strg+Umschalt+P			
	Close Product	Strg+W			
	Close Session	Strg+Umschalt+W			
8	Save Product	Strg+S			
8	Save Product As				
	Save Session	Strg+Umschalt+S			
	Save Session As				
	Import Raster Data	۱.			
	Import Vector Data	•			
	Export Raster Data	•			
	Other Exports	•	-		
	Exit	Alt+F4			
	detector_index				
	I1_flags				
~	m				
B P	roducts Pixel Info				
🗖 Na	vigation		· · · · · · · · · · · · · · · · · · ·		

BEAUFORT

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1a: Display MERIS scenes L1b

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Masks in MERIS scenes (L1b)

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1b: Display MERIS scenes L2

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Masks in MERIS scenes (L2)

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Masks in MERIS scenes (L2)

 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Take-home messages

- MERIS products are available as top-of-atmosphere radiances (Level 1b) and geophysical products (Level 2)
- The products product contains bands (e.g. chlorophyll concentration) and flags (e.g. turbid Case 2 water)
- VISAT allows visualisation of radiance/reflectances (grey scale, RGB) and colour coded geophysical quantities. Flags can be overlayed as masks with transparency
- It is good practise to always inspect the TOA RGB together with the Level 2 geophysical quantities. VISAT support analysis by image linking.
- Inspect the flags!

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Marine Reflectances (atmospheric correction)

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

 Analysis of marine reflectances as a result of the atmospheric correction

- VISAT Tools:
 - Exercise 1: Comparing TOA and marine reflectances with image linking, pins and the spectrum view
 - Exercise 2: Reflectance analysis using transects
 - Exercise 3: Layer management, visualization and creation

Atmospheric correction

Figure courtesy of T. Schroeder

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Atmospheric correction

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Atmospheric correction

Relative proportions of the spectrum at the top of the atmosphere

Relative contribution to TOA radiance
water leaving radiance: Lw
aerosol path radiance: Laer
Rayleigh path radiance: Lray

SEAUFORT

Figure courtesy of R. Doerffer

23-27 September 2013 | NMCI | Cork, Ireland

Top of Atmosphere

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Water leaving reflectance

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1a:

Investigate reflectances with the spectrum view

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Filter band for spectrum view

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCI

Investigate spectral behaviour of different surfaces

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1a: Solution

- Open Spectrum view 🔛
- Filter band for spectral visualisation
- Press shift key and move the cursor around the image
- Look at the spectral plot to see the different spectral response of several surfaces: turbid water, sea ice, land, clouds, etc.

Exercise 1b: Comparing TOA and marine reflectances

 Investigate the spectra of the top of atmosphere reflectances and of the marine reflectances of different water types and atmospheric conditions

Exercise 1b: Comparing TOA and marine reflectances

- What to do:
 - Display images: L1 refl RGB, L2 aero_opt_thick_865 and L2 RGB
 - Open spectrum view and look at both spectra L1 TOA refletances and L2 marine reflectances
 - Open the pin manager and load pin file and understand the spectra
 - Switch between displays for comparing TOA and marine reflectances
- Data:
 - MER_RR_1REFL_20110324.dim
 - MER_RR__2PRBCM20110324_102358_000005943100_00396_47393_ 0002.N1

Exercise 1b - solution

3

- Open products and bands
 - L1 reflec_2
 - L2 aero_opt_thick_865
 - L2 reflec_2
- Open Spectrum view
- Filter band for spectral visualisation
- Press shift key and move the cursor around the image
- Look at the spectral plot to see the different spectral response of several surfaces: turbid water, sea ice, land, clouds, etc.

Exercise 2: Reflectance analysis using transects

• What to do:

- Draw transects and compare the reflectance values along the transect L1 reflec_2, L2 aero_opt_thick_865 and L2 reflec_2
- Explain what you see
- Export to Excel
- Data:
 - MER_RR_1REFL_20110324.dim
 - MER_RR__2PRBCM20110324_102358_000005943100_00396_47393_ 0002.N1
 - Transect coordinate file: TRANSECT.txt

Transects

- Lines or polylines
- Transects belong always to the respective band
- Adding a transect
 - Draw a line with Draw Line or Draw Polyline tool
 - Importing a coordinates list (containing 2 columns: latitude, longitude)
- Display of pixel values along a transect:
 - Analysis \rightarrow Profile Plot...
- Exporting of pixel values along a transect:
 - File \rightarrow Export
 - \rightarrow Export Transect Pixels...
 - Right mouse click on image
 - \rightarrow Export Transect Pixels...

Transect Tool

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Comparison of transects

Exercise 2: Solution

Draw line using the Draw Line or Draw Polyline tool
 or import existing transect coordinate file: File→Import Vector Data
 →CSV...

For Files of type choose: plain text (*.txt, *.dat, *.csv)

- Open profile plot window: Analysis→Profile Plot...
- Toggle between views: L1 reflec_2, L2 aero_opt_thick_865 and L2 reflec_2
- The pixels can also be copied to a text file or to the clipboard: click with right mouse button into one of the displayed bands and choose Export Transect pixels...
- Right mouse click on transect for copying to clipboard and insert into an Excel sheet

ROI, Mask, Layer: Concept definitions

- Layer
 - Views in BEAM are composed of multiple, configurable layers
 - A layer is used to visualise a certain data source
 - Vector data, raster data and masks and represented by special layer types
- Mask
 - Masks a regions of raster dataset.
 - Masks can be derived from an expression, a value range, a geometry or from combinations of different masks.
- Geometry
 - A geometric shape (point, line, polyline or polygon).
 - Geometries can be drawn on a product view or imported from external files.
- ROI
 - Statistical computation and Analysis Tools can be performed on ROIs.
 - Masks are always and automatically applicable ROIs (→ ROIs are a role of Masks).

Exercise 3a: Layer management and visualization

- What to do:
 - Display image, L1b
 - Open the layer manager and study the masks
 - Play around with order and transparency
 - Add new layer
- Data:
 - MER_RR__1PNMAP20120407_095350_000003443113_00252_52852_0001.N1

Layer management

Options for Layers

- Handling visualisation
 - Order of layers
 - Transparency of overlays
- Add and remove layers
 - Overlay two bands
 - Overlay polygon files (visualisation only)

Exercise 3a: Solution

- Display image (L1 and L2 to see differences in the layers)
- Click on layer manager
- Play around with the layers:
 - Change order
 - Transparency overlay
- Add layer clicking at in the layer manager box

Transparency:

Exercise 3b: Create new Masks

- Create new mask:
 - By band math expression
 - By value range
 - By using region of interest (geometry)
- Combine mask
- Data:
 - MER_RR__2PRBCM20050120_023210_000007352034_00032_15116 _0001.N1

Create new Masks

 Create a new mask on the level 2 image that covers the invalid pixels and the ice-haze covered pixels in the Baltic Sea

Masks in **BEAM VISAT**

- Flags of ENVISAT standard products are automatically included as masks
- All geometries, pins and imported vector data are included as masks
- Own masks can be generated
 - from flags, geometries, band math expression
 - By combination of flags

Ð	Mask Manager - [2] algal_1					
0	Name	Туре	Colour	Tra	Description	f(x) [x]
	invalid_aero_products	Maths	0,	0	Land and water pixels flagged for invalid aero_alpha and aero_ A	24
	invalid_cloud_albedo	Maths	0,	0	Cloud pixels flagged for invalid cloud_albedo	
E	invalid_cloud_opt_thick_an	Maths	0,	0	Cloud pixels flagged for invalid cloud_opt_thick and cloud_type	
	invalid_cloud_top_press	Maths	0,	0	Cloud pixels flagged for invalid cloud_top_press	
] low_sun	Maths	15	0.5	Sun low above horizon (or conversely high sun zenith angle)	
F	high_glint	Maths	20	0.5	High (uncorrected) glint (water)	

- Generation of Masks
 - Masks defined by a band maths expression

f(x)

I2_flags.WATER and (I2_flags.PCD_17 or I2_flags.ICE_HAZE)

Ð	Mask	Manager - RGB															
۲	Na	me	Туре	Colou	r	Tra	Description										f(x) [x]
	соа	stline	Maths		0,	0	Coastline pix	el									4
	lan	d	Maths		10	0	Land product	t availabl	e								
	clou	bu	Maths		25	0	Cloud produc	t availab:	le								
	wat	ter	Maths		0,	0	Water produ	ct availal	ble								
	inva	alid_reflectances	Maths		0,	0	Pixels flagge	d for inva	alid ref	flectan	ces				_		G
	inva	alid_water_vapour	Maths		0,	0	Pixels flagge	d for inva	alid wa	iter va	pour				_		B D
	inva	alid_algal_1	Maths		0,	0	Water pixels	flagged	for inv	alid al	gal 1				_		
	inva	alid_algal2_tsm_ys	Maths		0,	0	Water pixels	flagged	for inv	alid al	gal2 ar	nd yello	w_subs	and tot			
	inva	alid_photosyn_rad	Maths		0,	0	Water pixels	flagged	for inv	alid P/	AR.				_		
	inva	alid_toa_veg	Maths		0,	0	Land pixels f	lagged fo	or inva	lid toa	_veg				_		Q ⁴
	inva	alid_boa_veg	Maths		0,	0	Land pixels f	lagged fo	or inva	lid boa	_veg	. .			_		
	inv	🛃 New Logical Band M	laths Expres	sion				_								23	
	in	Data cources:		-	-	_		Everenci	ioni			-					
	in	12 flags.TOAVI BA	D			0 and	6	12 fl	ags.	NATER	and	(12	flags	. PCD	17 or		
	in	12 flags.ICE HAZE				e ana	•	12_f1	ags.	ICE_H	IAZE)	(
	in	12 flags.TOAVI CS	I			@ or	6										
	lo	12_flags.MEDIUM_G	LINT			not (9										
	hie	12_flags.TOAVI_WS				(@)											
	m	12_flags.DDV	=	Co	nsta	nts	•										
	ice	12_flags.BPAC_ON		00	erat	ors											
	ab	12_flags.HIGH_GLI	NT .		noti												
	bp	Show bands		ru	neul	0.13	•										
	са	Show masks															
	ca	Show tie-point grids								_	_						
	са	Show single flags						ALLEY A	Î	Q		10			Ok, no e	errors.	
	sn																
	de											<u>o</u> k	<u> </u>	Cancel	He	elp	
	ur					_			-	_		-		_	_		

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCI

Masks defined by a value range

[×]

This a cloud mask

> 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

- Masks defined by a geometry such as lines and polygons

esa

г

- Combination of Masks
 - Union
 - Intersection
 - Differences
 - Complement of a mask

Ð	Name	Туре	Colo	ur	Tra	Description	f(x)	[
	toavi_bright	Maths		25	0.5	Bright pixel flagged by MGVI processing		
	toavi_bad	Maths		25	0.5	Bad pixel flagged by MGVI processing		5
	toavi_csi	Maths		25	0.5	Cloud, snow or ice over land pixel acc. to		4
	toavi_ws	Maths		20	0.5	Water/shadow pixel acc. to MGVI processing		4
	toavi_inval_rec	Maths		15	0.5	Invalid rectification (land)	6	
	white_scatterer	Maths		20	0.5	Presence of white scatterer in water		
	cosmetic	Maths		20	0.5	Cosmetic pixel (from level-1b)		1
	suspect	Maths		20	0.5	Suspect pixel (from level-1b)		1
	pcd_1_13	Maths		25	0	Uncertain normalized surface reflectance	L	4
	pcd_14	Maths		25	0	Uncertain total water vapour content		100
	pcd_15	Maths		25	0	Uncertain algal pigment index 1 or cloud top		
	pcd_16	Maths		25	0	Uncertain yellow substance and total susper	1	
	pcd_17	Maths		25	0	Uncertain algal pigment index 2 or bottom o		
	pcd_18	Maths		25	0	Uncertain PAR or cloud albedo or land surfa		
	pcd_19	Maths		25	0	Uncertain aerosol type and optical thickness \equiv		
1	new_invalid_ice_mask	Maths		25	0.5	I2_flags.WATER and (I2_flags.PCD_17 or I2		
	clouds_reflec_1	Range		25	0.5	0.2 <= reflec_1 <= 1.0		
	geometry	Geometry		51	0	Mask derived from geometries in 'geometry'		
	new_mask_48	Maths		25	0.5	new_invalid_ice_mask && geometry 🚽		

i.e. Intersection of two masks

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

esa

Exercise 3b: Solution

- Zoom to the Baltic Sea and test the flagging of the algal_2 product
 - Ice_haze areas are not covered fully by the PCD flag
- Create a new mask that includes the water mask as well as the ice_haze and the PCD_17 flag
 - A) Using math expression f(x)

- I2_flags.WATER and (I2_flags.PCD_17 or I2_flags.ICE_HAZE)

- B) Using ROIs- geometry
- C)Using the tools for combinations
 - select both flags: I2_flags.WATER and (I2_flags.PCD_17 or I2_flags.ICE_HAZE) and the one created from the ROI
 - Choose the tool: intersection

Take-home messages

- The atmosphere contributes more than 90% of the top of atmosphere radiance. The atmospheric correction over the ocean is a very critical processing step.
- A good indicator of the quality of the atmospheric correction is the decoupling of the atmospheric signal (e.g. aerosol optical thickness) from the water leaving reflectance.
- BEAM provides the spectrum view to quickly investigate spectral quantities.
- Masks and layers support the visual analysis of image data.
- Transect are a powerful tool to investigate spatial pattern.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Blue-Green Ratio Algorithm

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Content

- From reflectance to water quality parameters:
 - Blue/green ratio algorithm
- BEAM exercises
 - Exercise 1: Band arithmetic
 - Exercise 2: Compare water products
- Data:
 - subset_0_of_MER_RR__2PRBCM20080606_095728_000007182069_0 0151_32770_0001.dim

Blue Green Ratio

 Relation of chlorophyll and Rrs(490)/Rrs(555) ration for SeaBAM dataset (OC2)

OC4 – 3 different ratios

The OC4 includes another two ratios in the blue-green and selects the one that has the largest value for each station: Rrs(443)/Rrs(555); Rrs(490)/Rrs(555); Rrs(510)/Rrs(555). Each ratio works best best for a different part of the CHL range. This is the actual standard NASA CHL algo for SeaWiFS and MODIS.

Exercise 1: Band ratios using band math

- Open data: L2 atmospherically corrected radiance: subset_0_of_MER_RR_2PRBCM20080606_095728_000007182069_00151_32770_0001.dim
- Compute a simple band ratio for Chl estimation:
 - Open reflectance_2 and reflectance_5 bands
 - Use pin and spectrum view to investigate the spectra
 - Calculate band ratios
 - Compare with algal_1 in Level 2 product

Exercise 1: Band ratios using band math

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

Open reflec_2 and reflec_5

esa

Create pins and open spectrum view

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

How to modify pins

- To be able to differentiate between pins, and use this information in the spectrum view, use: layer manager
- With the pin manager open, select each pixel and modify color using the layer manager-layer editor tool
- Save pins in file "Data_pins_MER_RR_20080606.txt"

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Spectrum View

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Band Math Expressions

• Open Tools/Create Band by Band Maths

Target product: [2] subset_0_of_MER_RR_2PRBCM20080606_095728_000007182069_00151_32770_0001 • Name: blue-green-2 Description: Unit: Spectral wavelength: 0.0 ? Replace NaN and infinity results by Nam Particle_1 reflec_2 reflec_3 reflec_6 reflec_6 reflec_6 reflec_6 reflec_7 reflec_8 ? Show bands ? Show masks Show single flags Ok, no errors. Ok, no errors. Ok, no errors.		Band Maths				×	
[2] subset_0_of_MER_RR_2PRBCM20080606_095728_00007182069_00151_32770_0001 ↓ Name: blue-green-2 Description: Unit: Spectral wavelength: 0.0 Virtual (save expression only, don't write data) V Irtual (save expression only, don't write data) NaN Pathode Sector Sector	26 7	Target product:					
Name: blue-green-2 Description: Unit: Spectral wavelength: (D.0 Virtual (save expression only, don't write data) Replace NaN and infinity results by Name Replace NaN and infinity results by Name: Pate sources: reflec_1 reflec_3 reflec_4 reflec_6 reflec_6 reflec_7 reflec_8 V Show bands V Show masks Show single flags Ok, no errors. Ok, no errors.	4-1	[2] subset_0_of_ME	R_RR2PRI	BCM20080606_095728_00000	7182069_00151_3	2770_0001 👻	
Description: Unit: Spectral wavelength: 0.0 Virtual (save expression only, don't write data) V Replace NaN and infinity results by NaN And Maths Expression Editor Data sources: reflec_1 reflec_3 reflec_4 reflec_4 reflec_6 reflec_7 reflec_8 V Show bands V Show masks Show tie-point grids Show single flags Ok, no errors. VK	1	Name:	blue-green-	-2			
Unit: Spectral wavelength: 0.0 Virtual (save expression only, don't write data) Replace NaN and infinity results by NaN Obta sources: reflec_1 reflec_3 reflec_4 reflec_6 reflec_7 reflec_8 (e) Constants (b) Punctions (c) Show single flags Ok, no errors. Ok, cancel	618. 2	Description:					
Spectral wavelength: 0.0 Virtual (save expression only, don't write data) Replace NaN and infinity results by Rend Maths Expression Editor Data sources: reflec_1 reflec_2 reflec_3 reflec_4 reflec_6 reflec_7 reflec_7 reflec_7 reflec_8 I Show bands Show masks Show the-point grids Show single flags Ok, no errors.	E 123 4	Unit:					
✓ Virtual (save expression only, don't write data) ✓ Replace NaN and infinity results by NaN And Maths Expression Editor Data sources: reflec_1 reflec_2 reflec_3 reflec_6 reflec_6 reflec_7 reflec_8 Ø how bands Show bands Show te-point grids Show single flags Øk, no errors.		Spectral wavelength:	0.0				
Replace NaN and infinity results by Image: Contract in the image: Contre		👽 Virtual (save exp	pression only	, don't write data)			
Band Maths Expression Editor Data sources: reflec_1 reflec_2 reflec_3 reflec_4 reflec_5 reflec_6 (e) constants (e) Constants Operators Show bands Show tie-point grids Show single flags Ok, no errors.		Replace NaN and	l infinity resu	llts by		NaN	
Band Maths Expression Editor Data sources: reflec_1 reflec_2 reflec_3 reflec_4/ reflec_5 reflec_6 reflec_7 reflec_8 Image: Show bands Show masks Show single flags Ok, no errors. Ok, no errors.	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1						
Data sources: reflec_1 reflec_2 reflec_3 reflec_4 reflec_6 (0) reflec_7 reflec_8 Show bands Show te-point grids Show single flags Ok, no errors.	📶 Band Maths	Expression Editor					×
reflec_1 reflec_2 reflec_3 reflec_4 reflec_6 (0) reflec_7 reflec_8 (0) Constants (0) Constants Operators Functions Show bands Show bands Show single flags Ok, no errors.	Data sources:				Expression:		
reflec_2 reflec_3 reflec_4 reflec_5 reflec_6 (0) reflec_7 reflec_8 Operators Operators P Show bands Show tie-point grids Show single flags Ok, no errors. Ok, no errors.	reflec_1		A	@ + @	reflec_4/ r	reflec_5	
reflec_3 reflec_4 reflec_5 reflec_6 (0) reflec_7 reflec_8 V Show bands V Show masks Show tie-point grids Show single flags Ok, no errors. OK	reflec_2			0 - 0	Ī		
reflec_4 reflec_5 reflec_6 (@) reflec_7 reflec_8 (@) Constants • Operators • Operators • Functions • Show tie-point grids Show single flags Ok, no errors. Ok, no errors.	reflec_3				Ť		
reflec_5 reflec_6 reflec_7 reflec_8 Image: Constants Image: Constants <td< th=""><th>reflec_4</th><th></th><th></th><th></th><th>-</th><th></th><th></th></td<>	reflec_4				-		
reflec_6 reflec_7 reflec_8 Operators Operators Functions Functions Show single flags Ok, no errors. Ok, no errors.	reflec_5			@ / @			
reflec_/ Constants v Show bands Operators v Show masks Show tie-point grids Show single flags Ok, no errors.	reflec_6			(@)			
Image: Construction of the second	reflec 8			Constants	•		
Image: Show balls Functions Show masks Show tie-point grids Show single flags Image: Show single flags OK Cancel	Show bands		¥	Operators			
Show highs Show single flags Ok, no errors. OK Cancel Help	Show macks			Functions			
Show single flags Ok, no errors.	Chaw Karan	an anida					
OK Cancel Help	Snow tie-po	nt grids				ର ନର 🗩	Ok, no errors.
OK Cancel Help	Show single	flags			nand (mail 4		
	1					<u>o</u> k	Cancel Help

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1: Solution

- Display L2R reflectance bands: double click on reflec_2 and reflec_5
- Put new pins on different parts of the North Sea or open the file "Data_pins_MER_RR_20080606.txt"
- Generate a spectrum view plot and discuss the results for the different surfaces
 M
- Open the band math a calculate ratio of bands reflec_2/reflec_5. Name it "blue-green" ratio→Tools/Create band by band maths
- Calculate a second blue-green ratio with reflec_4/reflec_5. Named it "blue-green-2"
- Display the new band ratios

Exercise 1b: Compare with standard water quality products

- Open data:
 - L2 atmospherically corrected radiance and water quality products:
 - subset_0_of_MER_RR__2PRBCM20080606_095728_000007182069_0 0151_32770_0001.dim
- Display blue-green ratios saved before in L2
- Display algal_1 and algal_2 from the L2 standard product
- Display scatter plot comparing algal_1 and blue-green ratios

Compare Water Quality Products

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

esa

Compare Water Quality Products

Use geometry over water and display scatter plot

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCI

Compare Water Quality Products

Compare using same colour palette

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Exercise 2: Solution

- Display new ratios calculated using the L2R scenes
- Display bands algal_1 and algal_2 from the standard level 2 products
- Use the geometry to use it as a ROI in the scatter plot to compare results of algal_1 with the blue-green ratio.
- Compare results using the same colour palette: palettes\CHL_colours.cpd

Bio-optical models

- Blue green ratios work well where only Phytoplankton pigment absorption determines the water colour (so called Case 1 waters)
- If other optically active substances are in the water, the relationship between blue-green and Chl-a breaks. A model is required that relates the inherent optical properties of the water (IOP) to concentrations (Chl, TSM, yellow substance) as well as to the marine reflectance spectrum (Case 2 waters)

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Pigment absorption

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Take-home messages

- In Case 1 waters the blue-green ratio is closely related to the chlorophyll-a concentration
- In Case 2 waters a complex bio-optical model is required
- Pins allow to study and compare pixel values, also across different products.
- BEAM math tools enables creation of new bands using mathematical expressions.
- BEAM scatter plot allow comparison of different bands. Masks can be applied.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Statistical analysis of in-water products

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Contents

- Analysing water quality parameters:
 - Average chlorophyll concentration close to sea ice
 - Comparing water quality parameters with in-situ measurements
- VISAT Basics 1
 - Masks creation & manipulation
 - Region of interest and tools for statistics
 - Exercise 3: Region of interest, plots and statistics tool

Exercise 3: ROIs and statistics tool

- What to do:
 - Use masks as ROIs
 - ROIs in profile plots
 - ROI in statistics tool
- Data:
 - MER_RR__2PNMAP20120407_095350_000003443113_00252_52852_0001.N1
 - in-situ/ferrybox_cosyna_20120402.txt

Create a new mask

- Create a new mask that covers the invalid pixels and the ice covered pixels in the Bothnian Bay
- Steps:
 - Zoom to the Bothnian Bay and test the flagging of the algal_1 product
 - Ice areas are not covered fully by the PCD flag
 - Create a new mask that includes the PCD as well as the ice_haze flag
 - $f(x) \rightarrow \bullet$ Using math expression
 - I2_flags.WATER and not(I2_flags.PCD_15 or ice_haze)

Mask: algal_1_valid

Import track data

Import vector data/CSV/ferrybox_cosyna_20120402.txt

The data were provided by the COSYNA system operated by Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Profile plots

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

NA

ROIs in profile plots

Statistic Tool

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

ROIs in statistic tool

ROIs in statistic tool

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 3: Solution

- f(x)
 Create a new mask with valid pixels of algal_2: use math expression in mask manager
 - I2_flags.WATER and not(I2_flags.PCD_15 or ice_haze)
 - Import ferry-box in situ data:
 - Import vector data/CSV/ferrybox_cosyna_20120402.txt
 - Use mask as ROIs in correlative plots :
 - Click on the ROI and select algal_1_valid mask
 - ROIs in profile plots:
 - Click on the ROI and select algal_1_valid mask
 - ROI in statistics tool:
 - Click on the ROI and select algal_1_valid mask

Take-home messages

- Selecting valid pixels is important. The PCDs in MERIS products should identify them, but a critical look is necessary and a refinement sometime necessary.
- The mask manager in BEAM provides many ways to construct Regions of interest. These can be visualised as masks and they can be used to select pixels for statistical analysis, histograms, scatter plots and transect analysis.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Temporal analysis of water quality parameters

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

- Analysis of water quality dynamics
 - Study a timeline of products
 - Compare with in-situ data
- BEAM exercises
 - Spatial and temporal analysis tools
 - (re-)projection
 - Exercise 4: Time series of water quality parameters
 - Exercise 5: L3 binning tool

Exercise 4: Time series of WQ parameters

- Bohai_Sea, temporal and spatial variation of TSM values:
 - Directory: L2W

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

How to re-project a product: Tools/Reprojection lacksquare

🤼 Reprojection	Keprojection				
File Help	File Help				
I/O Parameters Reprojection Parameters	I/O Parameters Reprojection Parameters				
Source Product	Coordinate Reference System (CRS)				
Name:	Custom CRS				
L2_of_L2_of_MER_FSG_1PNBCG20050104_023842_000003182033_00304	Condatic datum: World Condatic System 1094				
Truest Deadlast	Projection: Ceographic Lat/ on (MCS 84)				
Name*					
_MER_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001_reprojected					
Save as: BEAM-DIMAP	Predefined CRS Select				
Directory:	O Use CRS of				
C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W	Output Settings				
V Open in VISAT	✓ Preserve resolution ✓ Reproject tie-point grids				
	Output Parameters No-data value: NaN				
	Add delta lat/lon bands Resampling method: Nearest				
	Output Information				
	Scene width: 3623 pixel Center longitude: 119°32'29" E				
	Scene height: 3909 pixel Center latitude: 37°50'26"N				
	CRS: WGS84(DD) Show WKT				
<u>R</u> un <u>Q</u> lose	<u>R</u> un <u>C</u> lose				

BEAUFORT

• Link to a re-projected product

	•		
	Ø	K New Time Series	
		Reproject Source Products	
		Use CRS of	
🚛 Select Source P	roduct		
Look in:	🕕 L2W		- → 👌 🕫 🖽 📰
Zuletzt verwendet Desktop Eigene	L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME	R_FSG_1PNBCG20051112_023433_000002332042_00261_19353_0001.data R_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001.data R_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001_reprojected.data R_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001_reprojected.data R_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001_reprojected.data R_FSG_1PNBCG20050120_023641_000002702034_00032_15116_0001.data R_FSG_1PNBCG20050120_023641_000002702034_00032_15116_0001.data R_FSG_1PNBCG20050123_024111_000003402034_00075_15159_0001.data R_FSG_1PNBCG20050123_024111_000003402034_00075_15159_0001.data R_FSG_1PNBCG20050123_024111_000003402034_00075_15159_0001.data R_FSG_1PNBCG20050126_024719_00003012034_00118_15202_0001.data R_FSG_1PNBCG20050126_024719_00003012034_00118_15202_0001.data	L2_of_L2_of_MER_FSG_1PNBCG L2_of_L2_of_MER_FSG_1PNBCG L2_of_L2_of_MER_FSG_1PNBCG L2_of_L2_of_MER_FSG_1PNBCG subset_0_of_L2_of_L2_of_MER_F subset_0_of_L2_of_L2_of_MER_F
Dokumente Computer	<pre>L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME L2_of_L2_of_ME</pre>	R_FSG_1PNBC020050120_024719_000003012034_00118_15202_0001.dim R_FSG_1PNBCG20050305_025228_000002592035_00161_15746_0001.data R_FSG_1PNBCG20050305_025228_000002592035_00161_15746_0001.dim R_FSG_1PNBCG20050324_025522_000002222035_00433_16018_0001.data R_FSG_1PNBCG20050324_025522_000002222035_00433_16018_0001.dim	
Netzwerk	File name: L2_o Files of type: All Files	III L2_of_MER_FSG_1PNBCG20050104_023842_000003182033_00304_14887_0001_reprojected.dim es	► Select Cancel

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

esa

• Select parameters for time series

🔼 New Time Series		
	Select	Variables
<pre>iop_a_total_443 iop_a_ys_443 iop_a_pig_443 iop_a_bb_spm_443 iop_a_det_443 iop_b_tsm_443 iop_b_tsm_443 iop_b_whit_443 iop_quality Kd_min Kd_412 Kd_443 Kd_490 Kd_490</pre>		■
	< Previous Next > Finish Cancel	<u>H</u> elp

esa

• Give a name to the time series

🐖 New Time Serie	25			×
			Set Product	Name
Time Series Name:	TimeSeries_Bohai_Sea			
	< Previous	lext >Einish	Cancel	Help

esa

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Time Series Tool – In Situ Data

It is possible to import in situ data

If in situ data from the study area is available, it is possible to import it and to visualize it in the time series plot together with the actual data stored in pins or form the query.

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Time Series Tool – In Situ Data

• In situ file format

ø	55.55 ST 55							
1		Lon		iop_a_total_443	iop_b_tsm_443	Kd_490	turbidity	Time
	pin_1	118.09384	38.447865	10.13997	64.65231	7.4306326	82.568665	08.05.2005
		118.209465	38.522823	1.530985	6.183371	1.2814502	25.765766	08.05.2005
1		118.09384	38.447865	18.33707	14.762576	14.821138	4.677825	23.01.2005
1		118.209465	38.522823	4.5607004	6.3481402	3.3385184	20.446308	23.01.2005
		118.09384	38.447865	10.13997	45.690357	7.4306326	89.6349	05.03.2005
	pin_2	118.209465	38.522823	1.530985	9.526975	1.2814502	22.61	05.03.2005
1.1					9.9.9.9			2.0

BEAUFORT

sa

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Time series player

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Time series graph

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUTORT

Exercise 4: Solution

- Re-project one L2W product to use as master
- Open Time Series tool and link the rest of the L2W images to the re-projected one
- Select parameters for time series
- Import in situ data: "faked_insitu_china.txt"
- Time series player
- Time series graph

Exercise 5: Level 3 binning (Tools/L3 binning)

R Binning							
I/O Parameters Filter Configuration							
Source Products							
÷ =							
C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W\L2_of_L2_of_MER_FSG_1PNBCG200 C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W\L2_of_L2_of_MER_FSG_1PNBCG200 C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W\L2_of_L2_of_MER_FSG_1PNBCG200 C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W\L2_of_L2_of_MER_FSG_1PNBCG200 C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W\L2_of_L2_of_MER_FSG_1PNBCG200							
< •							
Target Product							
Name:							
Donal_sed_L3							
C:\Projects-Ana\GeoInfo\OC-Kurs\PRACTICAL_1\Data_Unit4\L2W							
Run Qlose Help							

The term binning refers to the process of distributing the contributions of Level 2 pixels in satellite coordinates to a fixed Level 3 grid using a geographic reference system. The Level 2 pixels may come from several input products and are collected in the binning cells, respectively. Statistics are calculated for each bin cell.

L3 Binning Tool - Filters

Filters: specific target region and temporal filter

BEAUTORT

L3 Binning Tool - Configuration

• Specify bands and statistic measures

🕂 Binning					×	
I/O Parameters Filter Configuration						
÷ =						
Band	Expression	Aggregation	Weight	Percentile	Fill value	
iop_b_tsm_443		AVG	1.0	0	NaN	
iop_b_tsm_443		PERCENTILE	1.0	90	NaN	
Valid expression: not l1p_flags.CC_LAND and not l1p_flags.CC_CLOUD Target beight (nx): 2160 Spatial resolution: ~ 9.28 km/pixel						
Target height (px): 2100 Spauar resolution: ~ 9.26 km/pixer Supersampling: 1 Image: Output binned data						
			Rur	n <u>C</u> lose	Help	

Level 2 grid (blue) and Level 3 grid (yellow)

Aggregator	Description	Weight	Percentile
PERCENTILE	An aggregator that computes the p-th percentile.	not considered	integer value between 0 and 100
AVG_ML	An aggregator that computes a maximum-likelihood average.	any float value, not NaN	not considered
AVG	An aggregator that computes a maximum-likelihood average.	any float value > 0.0, not NaN	not considered
MIN_MAX	An aggregator that computes the minimum and maximum values.	not considered	not considered
ON_MAX_SET	An aggregator that sets an output if an input is maximal.	not considered	not considered

L3 binning results

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 5: Solution

- Open L3 binning tool: Tools/L3Binning
- Select input data directory:
 L2W
- Specify region and temporal target

- Configure output products:
- Display results

I/O Parameters Filte	er Configuration				
Band	Expression	Aggregation	Weight	Percentile	Fill value
iop_b_tsm_443		AVG	1.0	0	NaN
iop_b_tsm_443		PERCENTILE	1.0	90	NaN

Take-home messages

- Due its regular re-visit time satellite provide time series of observations that permit studying the temporal evolution of water quality parameters, if cloud coverage permits.
- The comparison with in-situ data shows the advantage of the dense temporal sampling by the satellite. The in-situ provide a precise absolute reference.
- The projection and binning tools of BEAM can be used to bring different products on the same grid for subsequent common analysis.
- The time series tools enables treating image stacks as a whole, for analysis and dynamic, movie-like display.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Validation

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Calibration and validation activities

- Without independent validation, satellite data products lack credibility.
- The main problem for a good validation is the scarcity of matched data sets consisting of reliable in situ measurements, and the estimate of the same variable retrieved from satellites.
- Another problem is the mismatch between a single point sample and the area average acquired from the remote sensor
- The definition of match-ups: is the value of an ocean variable determined from EO with an in situ measurement coincident in space and time.
- The algorithm should be tested using data spanning the whole range of variable values, and this is often difficult to achieve (several in situ campaigns).
- Some limits should be establish when interpreting data. Usually a 35% of permissible limit is established.
- Validation activities should continue over the whole like of a mission.
- Consistency in the treatment of the complete time series of data from a mission should be ensured (several re-processings and validation tests, even when the mission has ended).

Validation of water quality parameters Cesa

- Parameters to be validated (most common): water leaving radiance or reflectance (Lw, pw), trasnmittance (t), inherent optical properties (absorption –a- and (back)scattering –b-of several substances), chlorophyll_a, suspended matter, yellow substance, turbidity, transparency.
- Methods used: linear regression statistics and its representation in scatter plots, histograms, time series plots, target diagrams, transects, etc.

+ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23–27 September 2013 | NMCI | Cork, Ireland

Content

- Validation of water quality parameters. Integration of in-situ data and tools for analysis.
- BEAM exercises
 - Exercise 1: Import in situ data (vector and tabulated)
 - Exercise 2: Correlative plot analysis
 - Exercise 3: Pixel extraction tool

Formats for data import

- CSV
 - Tabstop seperated
 - A CSV file must have a header line specifying the column names
 - Latitude: 'lat' or 'latitude'
 - Longitude: 'lon', 'long' or 'longitude'
 - Column(s) with in-situ values
 - Points, Lines, Polygons

Example of in situ table

Name Lon	Lat Label	CHL TSM			
Station_1	8.433142	54.063217	Station_1	20 40	
Station_2	8.248533	54.270275	Station_2	10 20	
Station_3	8.100735	54.493687	Station_3	8 25	
Station_4	7.9993324	54.66786	Station_4	12 20	
Station_5	8.017196	54.945965	Station_5	13 18	
Station_6	8.073449	55.284126	Station_6	14 1	
Station_7	7.724219	55.33581	Station_7	16 4	
Station_8	7.6007733	55.081173	Station_8	14 2	
Station_9	7.526144	54.820965	Station_9	20 3	
Station_10	0 7.443456	56 54.58322	25 Station	10 1 5	
Station_11	1 7.329495	5 54.25239	6 Station	11 1 6	
Station 12	2 7.210209	94 53.99754	3 Station	12 4 2	
Station 13	3 7.622393	53.92673	35 Station	13 6 5	
Station 14	4 8.13969	53.970703	Station 14	3 15	

Example of vector file

# 1 # #	MULTIPOLYGONs Product: Created on:	subset_1_MER_RR1PQBCM20030809_101416_000002002018_00466_07534_0168 Thu Apr 12 14:48:36 CEST 2012	
#	Wavelength:	884.94403	
or	g.esa.beam.Mul	ltipolygon Name:String Geometry:MultiPolygon radiance_14:Double	
0	multipol	lygon_1 MULTIPOLYGON (((10 47, 0 43, 6 40, 10 47)), ((2 39, 3 39, 2.5 38, 2 39))) 5	9.383057
1	multipol	lygon_2 MULTIPOLYGON (((8 38, 2 45, 8 42, 8 38)), ((3 35, 5 36, 3.5 39, 3 35))) 59.383057	,

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Formats for data import

- Shapefile
 - ESRI shapefile
 - Points, lines, polygons
 - Import of elements as a whole or separately
- MERMAID Extraction file
 - Points

```
PROCESSING_VERSION;site;PI;lat_IS;lon_IS;TIME_IS;thetas_IS;PQC;MQC;chl_IS;
```

MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030907T130033Z;42.237999;P00000100;M11011010110110101111010;1.12E-01; MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030908T100033Z;41.848999;P00000100;M1101101011011011010;1.10E-01; MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030910T101533Z;41.109001;P00000100;M1101101011011011010;1.03E-01; MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030911T110034Z;38.824001;P00000100;M1101101011011011010;1.03E-01; MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030914T100033Z;43.737999;P00000100;M1101101011011011010;9.60E-02; MEGS_8.0;BOUSSOLE;DavidAntoine;43.367;7.9;20030916T101535Z;43.101002;P00000100;M1101101011011011010;9.10E-02;

- SeaDAS 6.x Track
 - Points

Exercise 1: Import in situ data

• What to do:

Import .csv file with in situ stations and data

- Data:
 - MER_RR__2PNMAP20120407_095350_000003443113_00 252_52852_0001.N1
 - in-situ/ fake_NorthSea_2012_import_in-situ.txt

Importing vector data

File	Edit View Analysis	Tools Window	Help
₿.	New Product	Strg+N	
6	Open Product	Strg+O	
	Open Session	Strg+Umschalt+O	
8	Reopen	,	
	Product Grabber	Strg+Umschalt+P	
	Close Product	Strg+W	
	Close Session	Strg+Umschalt+W	
8	Save Product	Strg+S	
6	Save Product As		
	Save Session	Strg+Umschalt+S	
	Save Session As		
	Import Raster Data	•	
	Import Vector Data	N *	CSV
	Export Raster Data	45	ESRI Shapefile
	Other Exports	,	MERMAID Extraction File
	Exit	Alt+F4	SeaDAS 6.x Track

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCH

Importing vector data

Import CSV Data	×		
These vector data Please specify a CR	does not define a coordinate reference system (CRS). S so that coordinates can interpreted correctly.		
Coordinate Reference	System (CRS)		
Ose target CRS	WGS84(DD)		
Custom CRS			
Geodetic datum:	World Geodetic System 1984 👻	1	
Projection:	Geographic Lat/Lon (WGS 84) 👻		
	Projection Parameters		
Predefined CRS	Select		
	<u>QK</u> <u>C</u> ancel <u>H</u> elp		Point Data Interpretation VISAT can interpret the imported point data in various ways. Please select:
			Output Leave imported data unchanged
			Interpret each point as vertex of a single line or polygon (This will remove all attributes from points)
			Interpret each point as track point
			<u>OK</u> <u>Cancel</u> <u>H</u> elp

sa

 3rd ESA ADVANCED TRA 23–27 September 2013 | NN

Exercise 1: Solution

- Open MERIS L2 data:
 File/Open product
- Display algal_2 and add colour palette:
 - Double click on algaL-2 band
 - Add CHL_Colours.cpd in the Colour manipulation box
- Import .csv as vector file:
 - Import vector data/CSV
- Visualize in situ stations in algal 2:
 - Zoom in on display view
- Experience the layer management tool to change the layout of the stations

Colour Manipulation

Exercise 2: Correlative plot

- What to do:
 - Investigate how the satellite data and in situ data match by using the correlative plot
- Products:
 - Data_Unit5/Unit5.1/MER_RR_2PNMAP20120407_09535 0_000003443113_00252_52852_0001.N1
 - Data_Unit5/Unit5.1/in-situ/
 fake_NorthSea_2012_import_in-situ.txt

🖄 Correla	tive Plot - [1] algal_2	
	Correlative Plot	Display Correlative Plot for a
25 -		Use ROI mask:
24 -		
23 -		Pay size:
22 -		
21 -		Point data source:
20 -		pins 🗸
19 -		Data field:
18-		
m ^{1/1}	No correlative plot computed yet. To create a correlative plot	X-Axis
έ ¹⁶	-Select a band	Auto min/max
D D 1	-Select vector data (e.g., a SeaDAS 6.x track)	Min: 0.05
	-Select a data field	Max: 20.95
<u>12</u>	For more information about this plot	Cog 10 scaled
e <u>6</u> 11	TIP: To zoom within the chart, draw a rectangle	
10	with the mouse or use the context menu.	Auto min/max
9.		Mint 2.016
8-		Marry 25 274
7 -		Max: 25.574
6-		Log10 scaled
5-		
4 -		
3-		+/- 15.0 %
	25 50 75 100 125 150 175 200	Show regression line
	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	🖸 📝 🏦 🚨 📀

BEAUFORT RESEARCH

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCH

Correlative Plot - [1] algal_2	E×
Correlative Plot	2 🔲 »
25 24 23 22 21 20 19 18 5 7 16 15 11 10 9 8 7 6 5 4 3	Use ROI mask: Use ROI mask: Box size: 1 Point data source: fake_NorthSea_2012_import_in-situ Data field: CHL X-Axis (CHL) Auto min/max Min: 0.05 Max: 20.95 Log10 scaled Y-Axis (algal_2) Auto min/max Min: 2.016 Max: 25.374 Log10 scaled Show tolerance range +/- 15.0 %
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 CHL	Show regression line
— 1:1 line CHL	2 🕽 🖞 🏦 🕒 📀

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

BEAUFORT Research

NMO

Correlative Plot - [1] algal_2	
Correlative Plot	2 🔲 🔹 »
25 24 23 22 21 20 19 18 E E D I D I I I I I I I I	 □ Use ROI mask: □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
y = 0.8294344x + 3.9903798 R ² = 0.75289	Show tolerance range +/- 15.0 %
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 CHL	Show regression line
	I 🖓 🔓 🕒 📀

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

BEAUFORT RESEARCH

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Exercise 2: Solution

- Open MERIS L2 data:
 - File/Open product
- Display algal_2 and add colour palette:
 - Double click on algaL-2 band
 - Add CHL_Colours.cpd in the Colour manipulation box

Time Series EO – in-situ

Extraction of data with Pixel Extraction Tool

23-27 September 2013 | NMCI | Cork, Ireland

Time series generation using external tools or VISAT Time series tool

Station1 Tageswerte

Exercise 3: Pixel Extraction tool

- What to do:
 - Using the pins location, extract information from the image and export in a .csv or text file.
 - For extraction of match ups and time series analysis
- Data:
 - L2_of_MER_FSG_1PNBCG20120106_025207_0000033831 10_00219_51526_0001
 - in-situ/ fake_NorthSea_2012_import_in-situ.txt

Pixel Extraction tool

Tools Window Help

Create Band by Band Maths...

			Create DEM-related Bands Create <u>N</u> RCS Bands (ASAR)	
			Create Filtered Band	
		b *	Create Vector Data Container	
			Attach Pixel Geo-Coding	
Pixel Extraction		1 I I I I I I I I I I I I I I I I I I I	Detach Pixel Geo-Coding	
			Spatial Subset from View	
Input/Output Pa	rameters		Data Flip	
Input paths:	[1] MER_RR2PNMAP20120407_095350_000003443113_00252_52852_0001.		Reprojection	
	⇒	1	Orthorectification	
			Mosaic	
			Collocation	
			Level- <u>3</u> Binning Im <u>ag</u> e Analysis Vegetation Processors (MERIS) <u>F</u> LH/MCI Processor	* * *
			Radiom <u>e</u> try Correction (MERIS) Case-2 Regional Processor (MERIS) Cloud Probability Processor (MERIS)	
	4 III		Lakes Processor (MERIS)	
Time extraction:	Extract time from product filename		ICOL Processor	
	Date/Time pattern:		Pixel Extraction	
	Time extraction pattern in filename:		Land/Water-mask	
	\${date}\${date}*		Glint Correction (MERIS/(A)ATSR)	
Output directory:	L:\ongoing\CoBiOS\WorkingArea\WP3\WP3.4\pixex		Time Series as Google Earth KMZ	
File prefix:	pixEx		FUB/WeW WATER Processor (MERIS)	
			NDVI Processor (MERIS)	
	<u>Extract</u> <u>Close</u> <u>H</u> elp		SMAC Processor (MERIS/(A)ATSR)	
		S	SST Processor ((A)ATSR)	

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Pixel Extraction tool

<u> Pixel</u> Extraction		×	Extraction		x
Input/Output Paramete	rs		Input/Output Parameter	ers	
Coordinates:	Name Latitude Longitude DateTime (UTC)	÷	Coordinates:	Name Latitude Longit DateTime (UTC)	
		•		Station_1 54.0632 8.4331 • Station_2 54.2703 8.2485 •	
				Station_3 54.6679 7.9993 Station_5 54.9460 8.0172	
				Station_6 55.2841 8.0734	
Allowed time difference:	Use time difference constrain		Allowed time difference:	a 🔲 Use time difference constrain	
	1 📩	Day(s) 👻		1 📩 Day(s)	-
Export:	☑ Bands ☑ Tie-point grids ☑ Masks	_	Export:	✓ Bands ✓ Tie-point grids ✓ Masks	
Window size:	1	1 x 1	Window size:	3	
Expression:	Use expression Edit Expression		Expression:	Use expression	
				I2_flags.WATER and not I2_flags.PCD_17 and not I2_flags.ICE_H AZE	
	Note: The expression might not be applicable to all products.			Note: The expression might not be applicable to all products.	_
	\bigcirc Use expression as filter $ \textcircled{\sc 0}$ Export expression result			O Use expression as filter	
Sub-scenes:	Enable export Border size: 0		Sub-scenes:	Enable export Border size: 0	
KMZ coordinates:	Export found coordinates in Google KMZ format		KMZ coordinates:	Export found coordinates in Google KMZ format	
	Extract Qos	se <u>H</u> elp		Extract Glose He	elp

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Pixel Extraction - Output

- Table of extracted pixels, all bands
- List of input products (product ID)

```
# BEAM pixel extraction export table
#
# Window size: 3
# Created on: 2012-05-04 11:26:39
```

# Wavelength:	1.0 2.0 3.0 440.0 55	0.0 670.0 870.0 412.5 442.5 49 <mark>0.0 510.0 560.0 620.0 665.0 708.75</mark> 0
ProdID CoordID Name	Latitude Longitude PixelX	PixelY Date(yyyy-MM-dd) Time(HH:mm:ss) algal_2 yellow_subs total
0 1 Stat_30 57.122513	14.030147 362.500 278.500	-0.024291038513183594 -0.5011708736419678 -0.6712477207183838 0.7
0 1 Stat_30 57.121769	14.034220 363.500 278.500	0.08650398254394531 -0.3762936592102051 -0.6608905792236328 0.634
0 1 Stat_30 57.121021	14.038292 364.500 278.500	0.2988358736038208 -0.356042742729187 -0.6964569687843323 0.628
0 1 Stat_30 57.119987	14.028601 362.500 279.500	0.05376100540161133 -0.43862223625183105 -0.6669691205024719 0.7
0 1 Stat_30 57.119240	14.032673 363.500 279.500	0.12134408950805664 -0.3545032739639282 -0.6419369578361511 0.602
0 1 Stat_30 57.118496	14.036745 364.500 279.500	0.26473093032836914 -0.3152179718017578 -0.6015998721122742 0.642
0 1 Stat_30 57.117458	14.027056 362.500 280.500	0.12704408168792725 -0.45264554023742676 -0.7054343223571777 0.6
0 1 Stat_30 57.116714	14.031128 363.500 280.500	-0.10196006298065186 -0.5452677011489868 -0.6245840787887573 0.6
0 1 Stat_30 57.115971	14.035198 364.500 280.500	0.1744828224182129 -0.2971940040588379 -0.6729031801223755 0.633
0 2 Stat_510 56.86099	92 13.678182 319.500 394.500	0.1657717227935791 -0.765121579170227 -0.5592461228370667 0.4
0 2 Stat_510 56.86025	56 13.682229 320.500 394.500	0.10509037971496582 -0.6452360153198242 -0.5588843822479248 0.4
0 2 Stat_510 56.85952	24 13.686276 321.500 394.500	0.23415625095367432 -0.600823163986206 -0.5622285008430481 0.4
0 2 Stat_510 56.85845	59 13.676668 319.500 395.500	-0.002189040184020996 -0.44395971298217773 -0.5836474299430847
0 2 Stat_510 56.85772	27 13.680715 320.500 395.500	0.0040056705474853516 -0.6788367033004761 -0.5861891508102417 0

Pixel Extraction - Output

#	Product ID Map		
Pı	roductID ProductType	ProductLocation	
0	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110410_100226_000000763101_47	7637:
1	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110418_100912_000000763101_47	7752:
2	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110419_093237_000000873101_47	7766:
3	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110423_102559_000000613101_47	7824:
4	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110424 094915 000000873101 47	7838:
5	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110427 093920 000000903102 47	7881
6	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110430 092927 000000873102 47	7924:
7	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110508 093613 000000873102 48	3039:
8	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110510 100253 000000783102 48	3068:
9	MER FSG 1N FLH MCI	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110530 092957 000000873103 48	3355:
10	MER FSG IN FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER FRS WeW 20110603 102318 000000643103	484:
11	L MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110604_094634_000000903103	4842
12	2 MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110626_094016_000000903104	4874
13	MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110628_100703_000000733104	487
14	A MER FSG IN FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110629_093024_000000873104	487
15	5 MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110630_103345_000000563104	488
16	5 MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110709_100352_000000763104	489
17	7 MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110916_093337_000001543106	499
18	MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20110929_095811_000001153107	501
19	MER FSG 1N FLH MC	U:\OutputPool\MERIS\FRS\WAQS-WeW\sweden\LakeBolmen\MER_FRS_WeW_20111023_101719_000002843108	504

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 3: Solution

- Open the pixel extraction tool
- Select the MERIS L2 image on the input/output label
 - Include coordinates of the in situ stations or points of interest: add coordinates from file (fake_NorthSea_2012_import_in-situ.txt)
- Use time difference constrain (or not)
- Select macro pixel size (1, 3, 5...)
- Introduce (or not) valid pixel expression
- Click "Extract"

Take-home message

- Without independent validation, satellite data products lack credibility
- Different types of in-situ data require different analysis techniques.
- The scientist needs to understand his EO data (flags!) and insitu data very well
- BEAM supports the comparative analysis of EO and in-situ data in the statistical analysis tools, the transects and scatter plots.

Thanks to NASA / OBPG group!

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Ocean Colour Processors

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Content

- Exploring alternative methods for ocean colour processing
 - Understanding Case2Regional, FUB and QAA approaches
 - Exploring differences
- BEAM exercises
 - Exercise 4: Processors in BEAM
 - Exercise 5: Transfer product bands
 - Exercise 6: Overlay different bands

Water processors in BEAM

- Processors: C2R Lakes, FUB, QAA, etc.
- Using the C2R and the FUB processors
- Using the cloud probability processor
- Processing chain: CloudProb + C2R + L3 (??)

BEAM Processors

17.10.2012

- Generic Processors
 - Cluster Analyses
 - Reprojection / Orthorectification
 - Mosaic
 - Collocation
 - Level-3 Binning
 - Pixel Extraction
- **Dedicated Processors**
 - Radiometric Correction
 - Case-2 Regioal Processor
 - ICOL Processor
 - FUB/WeW Water Processor
 - MERIS Case-2 Waters Processors
 - QAA for IOPs
 - FLH/MCI Processor

Tools Window Help Create Band by Band Maths... Create DEM-related Bands... Create NRCS Bands (ASAR)... Create Filtered Band... Create Vector Data Container... <u>ک</u> Attach Pixel Geo-Coding... Detach Pixel Geo-Coding... Spatial Subset from View... Data Flip... Reprojection... Orthorectification... Mosaic... Collocation... Level-3 Binning Image Analysis Vegetation Processors (MERIS) FLH/MCI Processor... Radiometry Correction (MERIS)... Case-2 Regional Processor (MERIS)... Cloud Probability Processor (MERIS) ... Lakes Processor (MERIS)... ICOL Processor... Pixel Extraction... Land/Water-mask... Glint Correction (MERIS/(A)ATSR)... Time Series as Google Earth KMZ... FUB/WeW WATER Processor (MERIS) ... NDVI Processor (MERIS)... SMAC Processor (MERIS/(A)ATSR)... SST Processor ((A)ATSR)...

Case2Regional processor

- Developed by GKSS Research Center under ESA contracts; part of the standard BEAM distribution
- Based on the inversion of radiative transfer modelling using artificial neural networks (ANN)
- Including atmospheric correction, IOPs retrieval and derived quantities (concentrations, Kd,...)

FUB processor

- Developed by Freie Universtätet Berlin
- Uses Level-1b TOA radiances in the bands 1-7, 9-10 and 12-14 to retrieve Case 2 water and atmospheric properties.
- The retrieval is based on 4 separate artificial NN which were trained based on extensive radiative transfer simulations with MOMO code

Cloud probability processor

The BEAM Cloud Probability Processor implements the detection of clouds in a MERIS L1b product. The created output product contains one raster indicating the probability that the current pixel is a cloud pixel, and three additional flags to the already present l1 falgs. The three flags indicate pixels which are cloudy (probability > 80%), cloud free (probability < 20%) or where it is uncertain (20% < probability < 80%).

Cloud Probability Processor 1.5.203	
File Help	
Input product file:	
Output and the flag	
C:\Lisers\Ana\cloud.dim	
Output product format:	
BEAM-DIMAP 👻	
Log filename prefix:	
cloud_prob	
Extra log to output directory	
Run	<u>C</u> lose <u>H</u> elp

Exercise 1: Compare processor results

- What to do:
 - Apply the Case2Regional Processor and inspect results
 - Apply the FUB WEW Processor and inspect results
 - Open the CC L2W product
 - Compare water products (by using the tools that have been introduced):
 - Case2Regional product
 - FUB WEW product
 - CoastColour L2W product
- Data:

- MER_RR__1PRBCM20080606_100125_000002002069
_00151_32770_0062.N1

Case2Regional processor

🤼 Case-2 Regional Processor (MERIS) v1.5.8	🧖 Case-2 Regional Processor (MERIS) v1.5.8
File Help	File Help
I/O Parameters Processing Parameters	I/O Parameters Processing Parameters
Source Product	V Perform atmospheric correction
Name:	
[1] MER_RR_1PRBCM20080606_100125_000002002069_00151_32770_0062.N1	
TurnetBurd at	
larget Product	
MER RR 1PRBCM20080606 100125 000002002069 00151 32770 0062 C2IOP	
	Output water leaving reflectance as:
	V Output path reflectance
jects\Schulungen\training courses\20131021 DRAGON_OC\PRACTICAL_2\Data_Unit_5\Unit5.2	Output transmittance
	Output normalised bidirectional reflectances
	Output cloud top pressure
	Land detection expression: toa_reflec_10 > toa_reflec_6 AND toa_reflec_13 > 0.0475
	Cloud/Ice detection expression: toa_reflec_14 > 0.2
	Water algorithm:
	Tsm conversion exponent: 1.0
	Tsm conversion factor: 1.73
	Chl conversion exponent: 1.04
	Chl conversion factor: 21.0
	Spectrum out of scope threshold: 4.0
	Invalid pixel expression: I1_flags.INVALID
	Alternative inverse water neural net (optional):
	Alternative forward water neural net (optional):
<u>R</u> un <u>C</u> lose <u>H</u> elp	<u>R</u> un <u>Q</u> lose <u>H</u> elp

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

C2Regional processor - results

[1] MERIS L1b - Tristimulus RGB [2] chl_conc

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

esa

FUB water retrieval processor

FUB.Water	
File Help	
FUB.Water	
File Help	id
I/O Parameters Processing Parameters	
Source Product	
Select source product:	
[1] MER_RR1PRBCM20080606_100125_000002002069_00151_32770	
	AOT bands
Target Product	
Name:	
4ER_RR1PRBCM20080606_100125_000002002069_00151_32770_0062_FUB_WeW	bright and not invalid and not suggest
Save as: BEAM-DIMAP 👻	
Directory:	
aining courses\20131021_DRAGON_OC\PRACTICAL_2\Data_Unit_5\Unit5.2	
Open in VISAT	
	Run Close
<u>R</u> un <u>C</u> lose	

sa

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Convert FUB from log10 to linear Cesa

📕 Band Maths	-		100	x		📕 Band Maths Expression I	Edi	tor							 X	
Target product: [3] MER_RR1PRBC Name: Description: Unit: Spectral wavelength: Virtual (save exp	CM20080606_10012 algal_2_lin 0.0 ression only, don't t	25_000002002069_00 : write data)	I51_32770_0062_FUB_W	2W •	F	Product: [3] MER_RR1PRBO Data sources: algal_2 ^ yellow_subs E total_susp aero_opt_thick_440 aero_opt_thick_550 aero_opt_thick_670 paro_opt_thick 870	SCM	20080606_100125_000002002 (@ + @ (@ - @ (@ * @ (@)	2069_(Expre exp	00151_3 ssion: 10 (alg	2770_(al_2)	0062_FI	UB_WeW	1	,	
Band maths expression	on:		Edit Expressio	0		reflec_1	-	Constants Operators Functions				_	_			
			OK <u>C</u> ancel	<u>t</u> elp		Show single flags			anna anna anna		Ş	<u>مر</u>	ж	Cancel	Ok, no error	rs.

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

FUB water retrieval processor results

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Results of different water retrieval algorithms

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 1: Solution

- Run the C2Regional processor: → Tools/Case-2 regional Processor (MERIS)
- Run the FUB WEW processor:→ Tools/FUB/WeW WATER Processor (MERIS)
- Convert FUB algal_2 product from log10 to linear using band math: exp10(algal_2)
- Display L2W conc_chl product and the conc_chlc product from C2R and algal_2_lin from FUB

Exercise 2: Transfer product bands

- What to do:
 - Apply the Cloud Probability Processor on all three input products
 - inspect results
 - Transfer the cloudprob band into the Case2R products
 - save the product
 - Inspect the result
- Data:
 - MER_RR__1PRBCM20080606_100125_000002002069_00151_32770_ 0062_cloud.N1
 - MER_RR__1PRBCM20080606_100125_000002002069_00151_32770_ 0062_C2IOP.dim

Cloud probability transfer with band maths

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

BEAUFORT RESEARCI

Cloud probabilty processor – result band

I 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

esa

Exercise 2: Solution

- Open Tools → Cloud Probability Tool (change output directory)
- Display C2R product generated before
- Transfer the cloudprob band into the Case2R products:
 - use band arithmetic
 - Choose the Case2R product as target product
 - disable Virtual
 - select cloud_prob band from Cloud Probability output product

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING DUCTOR ESRIN * 17.10.2012 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 3: Overlay different bands

- Overlay an RGB (L1) with a coloured chlorphyll band (L2)
- Steps:
 - Collocate the MERIS Level 1 and the Level 2 products
 - Tools → Collocation...
 - Specify both input products
 - Define scheme for renaming of bands
 - DON'T Save output product
 - Open RGB from L1 spectral bands (b7b5b2)
 - Open chl_conc band
 - Import colour palette "CHL_colours"

M Collocation							
File Help							
Source Products							
Master (pixel values are conserved):							
[1] MER_RR1PRBCM20080606_100125_000002002069_00151_32770_0 👻							
Slave (pixel values are resampled onto the master grid):							
[2] MER_RR1PRBCM20080606_100125_000002002069_00151_32770_0							
Target Product							
Name:							
Collocation-L1-12							
Save as: BEAM-DIMAP							
Direntory:							
\tracing courses\2/131021_DRAGON_OC\PRACTICAL_2\Data_Unit_5\Unit5.2							
☑ Open in VISAT							
Renaming of Source Product Components							
Rename master components: \${ORIGINAL_NAME}_M							
Pename dave components:							
Resampling							
Method: Nearest neighbour resampling 👻							
Run Glose							

- Data:
 - MER_RR__1PRBCM20080606_100125_000002002069_00151_32770_0062.N1
 - MER_RR_1PRBCM20080606_100125_000002002069_00151_32770_0062_C2IOP.dim

Overlay bands

- Open Layer Manager
 - Add layer by clicking
 - Choose Image of Band / tie-Point Grid

Layer Manager	Add Layer Select Layer Source
	Available layer sources: ESRI Shapefile Image from File Image of Band / Tie-Point Grid Layer Group Wind speed vectors from MERIS ECMWF annotations
Transparency: 0% 50% 100% 🕖	< <u>Previous</u> <u>Next</u> > <u>Finish</u> <u>Cancel</u> <u>H</u> elp

- Select band with the total suspended matter
- Change transparency of iop_b_tsm _443band (Layer manager)

Overlay bands

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23–27 September 2013 | NMCI | Cork, Ireland

Overlay bands

Exercise 3: Solution

- Open L1 image:
 - MER_RR_1PRBCM20080606_100125_000002002069_00151_32770_0062.N1
- Open L2 image:
 - MER_RR__1PRBCM20080606_100125_000002002069_00151_32770_0062_C2IO P.dim
- Collocate L1 and L2 products: Tools/Collocation
- Open RGB from collocated L1 spectral bands:(*_M) RGB(752)
- Open conc_chl-S band from collocated product (*_S)
- Open layer manager and choose Image of band. Select: conc_chl-S

Take-home message

- The inversion of the radiative transfer in ocean and atmosphere is a complex problem, with more unknowns than information contained in satellite data.
- Different algorithms make different assumptions in order to decrease the number of unknowns, and use different mathematical approaches to solve the non-linear inversion problem.
- Each algorithm has its own strength and weakness; the user needs to carefully study, understand and respect the algorithm's validity range, the limitations and the strengths.
- BEAM processors are software that take an EO product as input and generate a new output product.
- Different alternative methods for water quality retrieval and related problems (cloud screening, adjacency correction) have been developed by scientists and made available open-source in BEAM to other users.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Spatial statistics for marine protected areas

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Content

- Studying the spatial statistics of water quality parameters within a water body, identified by the marine protected areas
- BEAM exercises
 - Exercise 1: Statistics by areas, importing shape files
 - Exercise 2: Identifying and excluding invalid values; working with ROIs, masks and statistics

Exercise 1: Area statistics using shapefiles

- Show the distribution if Chlorophyll values for Marine Protected Areas in the Baltic Sea*
- Steps:
 - Open MERIS L2 product: MER_RR__2PNMAP20120407_095350_000003443113_00252_52852 _0001.N1
 - Open band algal_2 and pan to the Baltic Sea
 - Import shapefile (import polygons as separated ROIs)
 - ...\in-situ\Baltic Sea Protected Areas\ _ags_BSPAs_1.shp
 - Open statistic tool
 - Display the statistics for selected areas

*The shapefile of Protected Areas has been downloaded from the HELCOM Maps and Data Service: http://maps.helcom.fi/website/mapservice/index.html

Importing a shapefile

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Layer Manager

Transparency:

0%

50%

100%

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Derive statistics for individual protected areas

Statistics - [2] MER_RR2PNMAP20120407_095350_000003443113_00252_52852_0001.N1	
No statistics computed yet.	Use ROI mask(s):
	Statistical Precision Image: Statistical Precision Statistical Precision:
	1

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Statistics Tool

23-27 September 2013 | NMUL | Lork, Ireland

Exercise 1: Solution

- Open MERIS L2 product 🛛 📹
- Open band algal_2 and pan to the Baltic Sea
- Import shapefile (import polygons as separated ROIs)
 - → File/Import Vector Data/ESRI shapefile
 - (by NAME) 🔰
- Open statistics tool
- Display the statistics for selected areas (note: algal_2 band needs to be selected in the band list)

Exercise 2: Erase invalid pixels from statistics

- Show statistics for only valid pixels within the protected area " Merenkurkun_…"
- Steps

- Open Mask Manager
- Select masks for "Merenkurkun_" AND "ice_haze"
- Select option: difference of selected mask
- OR use band math expression:
- Rename the new mask: valid_Merenkurkun
- Apply statistsics for Valid_Merenkurkun and Merenkurkun

Mask Manager – combining masks

Ø Mask Manager - [1] algal_2								
۲	Name	Туре	Colour	Tra	Description	f(x) [x]	
	invalid_cloud_opt_thick_and_type	Maths	0,	0	Cloud pixels flagged for invalid cloud_opt_thick and clou		<u>,</u>	
	invalid_cloud_top_press	Maths	0,	0	Cloud pixels flagged for invalid cloud_top_press			
	low_sun	Maths	15	0.5	Sun low above horizon (or conversely high sun zenith a	14		
	high_glint	Maths	20	0.5	High (uncorrected) glint (water)			
	medium_glint	Maths	25	0.5	Corrected for glint (water)			
	ice_haze	Maths	25	0	Ice or high aerosol load pixel			
	land_aerosol_on	Maths	51	0.25	Land aerosol remote sensing turned on			
	absoa_dust	Maths	0,	0.5	Dust-like absorbing aerosol selected for atmosphere cor			
	High_Coast	Geometry	25	0.5	Mask derived from geometries in 'High_Coast'			
	Gr"s"/Sing"_Archipelago	Geometry	25	0.5	Mask derived from geometries in 'Gr"s"/Sing"_Archipelac			
	Per"meren_kansallispuisto_/Bothn	Geometry	25	0.5	Mask derived from geometries in 'Per"meren_kansallispu			
	Merenkurkun_saaristo_/Outer_Bo	Geometry	25	0.5	Mask derived from geometries in 'Merenkurkun_saaristo			
	pins	Geometry	25	0.5	Mask derived from geometries in 'pins'	-		

esa

Statistics for ROIs

\sum Statistics - [1] algal_2

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

Exercise 2: Solution

- Steps
 - Open Mask Manager 🛛 🛫
 - Select masks for "Merenkurkun_" AND "ice_haze"
 - Select option: difference of selected mask
 - OR use band math expression:
 'Merenkurkun_saaristo_/Outer_Bothnian_Thresh old_Archipelago_(' and not I2_flags.ICE_HAZE
 - Rename the new mask: valid_Merenkurkun

Take-home messages

- The marine protected areas in the Baltic Sea differ in their water quality parameters.
- Proper screening of invalid pixels is of very high importance.
- BEAM offers shape file important for area selection and treats these as ROIs.
- Statistics for multiple ROIs can be generated at once.

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Scripting of BEAM

Carsten Brockmann

Ana Ruescas

Kerstin Stelzer

23-27 September 2013 | NMCI | Cork, Ireland

Options

- Use BEAM's command-line tools:
 - From a command-line shell
 - From shell scripts
 - From Python, IDL, MatLab...using dedicated systems
- Use the BEAM Java API to call BEAM functions:
 - From your Java program
 - From your Python program

BEAM command-line tools

- Have a look into the \${BEAM-HOME}/bin directory
- gpt –Used to execute various "BEAM operators" and chains of operators.
- pconvert Used to convert product files into other data and images formats (will become a gpt opertaor)
- binning
- meris-smac Envisat MERIS smile correction
- meris-cloud Envisat MERIS cloud screening
- flhmci Envisat MERIS/AATSR FLH/MCI processors
- aatsr-sst ATSR/AATSR SST processor
- mosaic deprecated, use gpt Reproject
- mapproj deprecated, use gpt Mosaic

BEAM gpt

- Most important BEAM batch-mode tool
- Other command-line tools will become BEAM operators in the future
- Usage
 - gpt <op>|<graph-file> [options] [<source-file-1> <source-file-2> ...]
- Which operators are available?
 - gpt –h
 - Note that list of operators may vary depending on the installed BEAM plug-ins

BEAM gpt operator index

- Refer to gpt documentation in BEAM VISAT help
- Operator index lists only standard operators

BandMaths	Create a product with one or more bands using mathematical expressions.			
<u>Collocate</u>	Collocates two products based on their geo-codings.			
EMClusterAnalysis	Performs an expectation-maximization (EM) cluster analysis.			
<u>KMeansClusterAnalysis</u>	Performs a K-Means cluster analysis.			
Meris.CorrectRadiometry	Performs radiometric corrections on MERIS L1b data products.			
Meris.N1Patcher	Copies an existing N1 file and replaces the data for the radiance bands			
<u>Mosaic</u>	Creates a mosaic out of a set of source products.			
PixEx	Extracts pixels from given locations and source products.			
Read	Reads a product from disk.			
Reproject	Reprojection of a source product to a target Coordinate Reference System.			
Subset	Create a spatial and/or spectral subset of a data product.			
<u>Unmix</u>	Performs a linear spectral unmixing.			
<u>Write</u>	Writes a data product to a file.			

SEAUFORT

BEAM gpt parameterisation

- Many of the BEAM gpt operators and commandline tools have a counterpart in the VISAT tools menu
- You can save a parameter file from an oprator's GUI in VISAT and use it with BEAM gpt on the command-line

Calling BEAM gpt from shell scripts

input-path = '~/eodata/MER_RR_1P.N1'

 gpt.sh Reproject –Pcrs = AUTO: 42001 –f NetCDF \$input-path

Calling BEAM gpt from Python

```
import subprocess
qpt = '~/software/beam-4.9/bin/gpt.sh'
operator = 'Reproject'
parameters = '-Pcrs=AUTO:42001 -f NetCDF'
input path = '~/eodata/MER RR 1P.N1'
process = subprocess.Popen(gpt + ' ' + operator \
                             + ' ' + parameters + ' '+ input path, \
                             shell=True, \setminus
                            bufsize=1 , \setminus
                             stdout=subprocess.PIPE, \
                             stderr=subprocess.STDOUT)
trace = open('qpt.stdout', 'w')
for line in process.stdout:
    trace.write(line)
    trace.flush()
trace.close()
process.stdout.close()
code = process.wait()
```


Processing chain: using gpt graphs

- Advantages:
 - no intermediate files written, no I/O overhead
 - reusability of processing chains
 - simple and comprehensive operator configuration
 - reusability of operators configurations
- Usage example
 - gpt iop-graph.xml

BEAM gpt graph XML example 1 @esa

Single operator = single node:

```
<graph id="someGraphId">
    <version>1.0</version>
    <node id="someNodeId">
        <operator>Meris.Case2Regional</operator>
        <sources>
            <sources>
            <source>${source}</source>
            </sources>
            <sources>
            <ourputReflecAs>IRRADIANCE_REFLECTANCES</outputReflecAs>
            <ourputNormReflec>true</outputNormReflec>
            <sourputSudditions
            <sourputSudditions
            <sourputSudditions
            <sourputSudditions
            <sourputSudditions
            <sourputSudditions
            <sourputSudditions
            <sourputSuditions
            <sourputSuditions
            <sourputSuditions
            <ourp
```


BEAM gpt graph XML example 2 Cesa

Two operator chain: (1) IOP, (2) subset

```
<graph id="Case2RGraph">
 <version>1.0</version>
 <node id="case2r">
    <operator>Meris.Case2Regional</operator>
    <sources>
      <source>${source}</source>
    </sources>
   <parameters>
      <doSmileCorrection>false</doSmileCorrection>
      <outputReflecAs>IRRADIANCE REFLECTANCES</outputReflecAs>
      <outputNormReflec>true</outputNormReflec>
      <cloudIceExpression>toa reflec 14 > 0.025</cloudIceExpression>
   </parameters>
  </node>
 <node id="subsetNode">
    <operator>Subset</operator>
    <sources>
      <source>case2r</source>
    </sources>
   <parameters>
      <geoRegion>POLYGON((119.0 36.0, 125.0 35.0, 122.0 30.0, 117.0 30.0, 119.0 36.0))</geoRegion>
      <copyMetadata>true</copyMetadata>
    </parameters>
  </node>
</graph>
```

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

SEAUFORT

Getting help – Command Line

- Using gpt
 - gpt –h
 - In BEAM VISAT Help Topics:
 Graph Processing Framework (GPF)
- Setting up a gpt processing chain:
 - http://www.brockmann-consult.de/beamwiki/display/BEAM/Creating+a+GPF+Graph

Getting help - Java

- BEAM Java API Documentation:
 - http://www.brockmannconsult.de/beam/doc/apidocs/index.html
 - BEAM home page / downloads
- BEAM Java Programming:
 - http://www.brockmann-consult.de/beamwiki/display/BEAM/Development

Integrating BEAM code in Python Cesa

- To call BEAM API functions from C-Python JPipe: http://jpype.sourceforge.net/
- It is very easy to use the BEAM API with Jython: http://jpype.sourceforge.net/

End of Unit

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

