

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

# SAR Detection Capabilities, Interpretation and Application

J.A. Johannessen and F. Collard

23-27 September 2013 | | NMCI | Cork, Ireland





# The **SAR** images manifest expression of









# SAR CONTRIBUTION TO MARINE MONITORING

| Operational    | Emerging    | <b>Routine Product</b> | Research        |
|----------------|-------------|------------------------|-----------------|
| Surveillance   | New         | and partly used        | Dominated       |
| Survenunce     | Application | in NWD                 |                 |
|                | Application |                        |                 |
|                |             |                        |                 |
|                |             |                        |                 |
| Ship detection | Wind field  | Ocean Waves            | Surface current |
| -              | retrievals  | and                    | fronts and      |
|                |             |                        |                 |
| Oil spill      |             | Ocean Spectra          | eddies          |
| detection      |             |                        |                 |
|                |             |                        | Internal Wayos  |
| ~ ~            |             |                        | unter har waves |
| Sea Ice        |             |                        |                 |
|                |             |                        | Atmospheric     |
| Shallow water  |             |                        | boundary layor  |
| Shallow water  |             |                        | boundary layer  |
| Bathymetry     |             |                        | Processes       |
|                |             |                        |                 |
|                |             |                        | Film domning    |
|                |             |                        | r nn damping    |
|                |             |                        |                 |



# **Conventional SAR Signature Interpretation**







Dipubly gradientic biographic and the segment of th





## Surface Current Fronts



(a) Hydrodynamic modulation





# Converging-diverging surface currents



6



# (b) Divergence





## Surface Current Fronts



#### (b) Surface film modulation









#### (c) Atmospheric boundary layer (ABL) stability





# Mesoscale variability and eddies





16 November 2009 19:58:15 UTC off the coast Of northern Norway and Lofoten

#### Mesoscale anticylonic eddy







### Sensor synergy to advance mesoscale studies





Kudryavtsev, A. Myasoedov, B. Chapron, J.A. Johannessen, F. Collard, JGR; 2012



## Importance of Sensor Synergy





SST AND SUNGLINT

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland



BEAUFORT RESEARCH

# **Doppler Centroid Analysis**



Chapron et al. [JGR-Oceans 2005]



- Doppler anomaly is correlated with line-of-sight wind
- Corrections for wind / wave contributions can be derived



# **Doppler Centroid Analysis**





Chapron et al. [JGR-Oceans 2005]

Image intensity (gray) and Doppler anomaly (color) of an ENVISAT ASAR ScanSAR image

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland



BEAUFORT Research

#### LINKS BETWEEN GOCE MSGC and ASAR Doppler







# Gulf Stream Separation in Envisat ASAR RD, GHRSST and SMOS SSS field



ASAR RD

GHRSST

**SMOS SSS** 



→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

## Satellite sensor synergy









# TanDEM-X





- Second satellite in close formation flight with TerraSAR-X
- Main purpose: High-resolution land topography mapping
- Ideal along-track baselines within narrow latitude regions, usually close to north and south pole



# 2D Vector Currents: Dual-Beam Interferometry







esa

# **TanDEM-X Example**

Orkney (Scotland), 2012-02-26 6:41 UTC, shown area = 30 km × 30 km



 Also performed Doppler centroid analysis; results found to be of quality similar to split-antenna ATI results

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland





esa

# Bathymetry detection by imaging radar





3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland



BEAUFORT

# Bathymetric features along the Chinese coast





ERS-1 SAR image of the Xinchuan Gang Shoals at the east coast of China north of Shanghai. Part of the area falls dry during ebb tide (dark areas off the coast).



## Bathymetric features along the Dutch coast









# **Conventional SAR Signature Interpretation (2)**





Cees de Valk [SeaSAR 2008]

Sandwave topography from 6 ERS SAR images

Reference topography from echosoundings

- Shallow water bathymetry retrieval from SAR signatures
- Main achievement: Reduction of required echosoundings



#### **Internal Waves**



IWs in the Straight of Gibraltar



http://earth.esa.int/ers/instruments/sar/applications/ERS-SARtropical/



# Roughness change by Internal Waves







# **Roughness change by Internal Waves**





→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland



BEAUFORT Research

### Internal solitons from China Sea 27 March 2005









#### Internal waves in the South China Sea from SAR images





#### After Xilin Gan



# Internal soliton from China Sea







### Simulation of backscatter anomaly due to presence of IW





### Internal Waves and Oil Spill



BEAUFORT Researcij



#### Atmospheric gravity waves and Oceanic IW





#### TYPICAL SAR SIGNATURE OF ATMOSPHERIC GRAVITY WAVES

TYPICAL SAR SIGNATURE OF OCEANIC INTERNAL WAVES

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland



BEAUFORT