

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

SAR Detection Capabilities, Interpretation and Application

J.A. Johannessen and F. Collard

23-27 September 2013 | | NMCI | Cork, Ireland

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and partly used	Dominated
	Application	in NWP	
Ship detection	Wind field	Ocean Waves	Surface current
	retrievals	and	fronts and
Oil spill		Ocean Spectra	eddies
detection			
			Internal Waves
Sea Ice			
			Atmospheric
Shallow water			boundary laver
Bathymotry			
Bathymetry			Frocesses
			Film damping

SAR Signatures of Ocean Waves

- Bragg scattering: NRCS ∞ Bragg wave intensity; relation depends on incidence angle
 - Longer waves modulate the NRCS
 - Tilt modulation affects incidence angle
 - Hydrodynamic modulation affects Bragg wave energy

Courtesy Roland Romeiser

SAR WAVE IMAGING MECHANISMS

Longer waves locally modify the exact plan of incidence to produce a contrast corresponding to the local change in cross section

 \rightarrow Tilt Modulation : a priori knowledge of the gradient of the relative cross section as a function of the small incidence angle deviation

$$T_t(k) = \left(\frac{1}{\sigma^o} \cdot \frac{\partial \sigma}{\partial \theta}\right)_{\theta = \theta_0} \cdot ik_r$$

SAR WAVE IMAGING MECHANISMS

 \rightarrow Hydrodynamic Modulation : a priori knowledge of the gradient of the relative cross as a function of the phase of the long wave

$$T_{h}(k) = \left(\frac{1}{\sigma^{o}} \cdot \frac{\partial \sigma}{\partial \varphi}\right) \cdot ik_{r}$$

After Neumann and Pierson

SAR wave imaging: What is the travel direction

om Co- to Cross-Spectra Estimation: Ambiguity Removal

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

Ambiquity removal

3 look intensity images

Spectral Estimation

Inversion to SAR Ocean Wave Spectra

BEAUFORT

Swell propagation

Courtesy Collard, Chapron (ESA WVC study) http://soprano.cls.fr

Higer Order Products - Crossing Seas

CourtesyCLS-NORUT

BEAUFORT Research

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and partly used	Dominated
	Application	in NWP	
Ship detection	Wind field	Ocean Waves	Surface current
	retrievals	and	fronts and
Oil spill		Ocean Spectra	eddies
detection			
			Internal Waves
Sea Ice			
			Atmospheric
Shallow water			boundary laver
Bathymetry			Processes
			Film damping
			1 0

Radar backscatter increases with wind speed

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

esa

SAR sensing of wind speed

- Transmits a puls of microwave radiation
- Measures the fraction that comes back

 $P_{r} = (P_{t}/4\pi R^{2}) G (\sigma/4\pi R^{2}) A$ measured = incident x reflected

G = antenna gain, A = antenna area, σ = radar cross section, R = range distance

 σ is a measure of the surface roughness

esa

σ as function of wind direction for various wind speeds

Wind Scatterometer Geometry

29.3°

45%

500 Km

SUB-SATELLITE TRACK

Scatterometers looks at the same spot from several angles to be able to retrieve both wind speed and direction

Wind Scatterometer geometry. The three Wind Scatterometer antennae generate radar beams 45° forward, sideways and 45° backwards across a 500 Km wide swath, 200 Km to the right of the sub-satellite track.

200 Km

Multi-antenna solution

23-27 September 2013 | NMCI | Cork, Ireland

SAR's have only one antenna

- Wind direction information must be taken from another source
 - Numerical model
 - Scatterometer (if colocated in time and space)
 - From wind streaks in the SAR-image
 - New resource: SAR Doppler information

Envisat ASAR V/V ASCENDING 02-MAR-2006 19:43:49

Atmospheric Boundary layer rolls

BEAUFORT Research

High-Resolution Wind Fields from SAR Imagery

Sub-image 1(a): ERS-2 SAR 22 June 1996

Sub-image 1(b): ERS-2 SAR 22 June 1996

SUCCESS: The wind direction from the algorithm is correctly chosen along the direction of the wind streaks.

FAILURE: In this area, atmospheric gravity waves and atmospheric boundary layer rolls give two different maxima perpendicular to each other in the image spectrum. The wind direction automatically chosen by the algorithm is parallel to the gravity waves. This is corrected by an operator before the final wind map is produced.

A MARSAIS Product

MARSAIS - Marine SAR Analyses and Interpretation System

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

70 N

20

0

QuikScat wind vectors: 2005/08/28 - morning passes - Gulf of Mexico

Hurricane Katrina, 28 Aug 2005 Importance of using correct wind direction

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New Application	Routine Product and partly used in NWP	Research Dominated
Ship detection Oil spill detection	Wind field retrievals	Ocean Waves and Ocean Spectra	Surface current fronts and eddies
Sea Ice			Internal Waves
Shallow water Bathymetry			Atmospheric boundary layer Processes
			Film damping

OIL SPILLS

BEAUFORT

Ships and Ship Wakes - Oil spill?

Black tail – but not always a real pollution

Towing of a dead whale

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

23-27 September 2013 | NMCI | Cork, Ireland

Oil spill in the Gulf of Mexico

20 [m/s]

16 18

Oil spill in the Gulf of Mexico

ant

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

esa

Oil spill in the Gulf of Mexico

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

4

6

8

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New Application	Routine Product and partly used in NWP	Research Dominated
Ship detection Oil spill detection	Wind field retrievals	Ocean Waves and Ocean Spectra	Surface current fronts and eddies
Sea Ice			Internal Waves
Shallow water Bathymetry			Atmospheric boundary layer Processes
			Film damping

Surface and volume scattering

The importance of volume scattering is governed by the dielectric properties

(dielectric constant) of the material: High DE: surface scattering dominates Low DE: volume scattering dominates

