

P. Cipollini, H. Snaith - A short course on Altimetry

Altimetry 2 Data processing (from satellite height to sea surface height)

Satellite height to sea surface height esa

- The altimeter measures the altitude of the satellite above the earth surface
- The oceanographer wants a measurement of sea level
- Steps that need to be taken
 - Instrument corrections
 - Platform corrections
 - Orbit determination
 - The effect of refraction: ionospheric, wet/dry tropospheric
 - Sea surface effects

Reference Ellipsoid

Altimeter Corrections & Orbits

- Platform Corrections due to instrument geometry and other effects on the satellite
- Orbits must be known as accurately as possible
- Correction for atmospheric delay effects
- Correction for surface effects
- Correction for barometric effects
- Estimating/Removing the geoid
- Estimating/Removing tides

Platform corrections

- The Earth is not round.
 - The true shape of the earth is the geoid
 - As the satellite orbits the Earth it moves closer and further away responding to changes in gravity
- Satellite is moving towards and away from the earth
- A Doppler correction applied to range
- Other platform corrections are applied to range and need not worry the scientist...
 - Eg correction for the distance between the centre of gravity of the spacecraft and the altimeter antenna
- …unless something goes wrong
 - eg the USO (Ultra Stable Oscillator) range correction for RA-2 on board Envisat

Orbits

- From the altimeter measurement we know the height of the satellite above the sea surface
- We want to know the height of the sea surface above a reference (the geoid or an ellipsoid)
- Therefore we need to know the satellite orbit, to a few cm or less, relative to the same reference
- This is done through a combination of satellite tracking and dynamical modelling.
- A dynamical model is fitted through the tracking data. Solutions cover a few days at a time.
- The tracking information comes from DORIS, GPS and Satellite Laser ranging (SLR)

DORIS

SLR

SLR Stations

DORIS stations

Quality of orbits

- The quality of orbits are measured by the reduction of crossover differences and by comparison to SLR stations
- TOPEX/Poseidon and Jason orbits are now good to the ~2-cm level
- ERS-2 and ENVISAT: ~3 cm
 - more affected by drag, as in lower orbit, and much larger, than T/P and Jason

Topex/Poseidon Orbit Error Budgetesa

- Size of observed error in orbit model, by parameter
 - Gravity, 2.0 cm
 - Radiation pressure, 2.0cm
 - Atmospheric drag, 1.0 cm
 - Geoid model, 1.0 cm
 - Solid earth and ocean tide, 1.0 cm
 - Troposphere, < 1 cm
 - Station location, 1.0 cm
- ⇒ Total radial orbit error, 3.5 cm
 - Mission design specification, 12.8 cm
- With latest, state-of-art models, the above total orbit error decreases to ~2.0 cm

Atmospheric Corrections

- As the radar signal travels through the atmosphere it is slowed down w.r.t. speed of light in the vacuum
- Since we need speed to estimate range, we must correct for this effect.
- There are three parts of the atmosphere that must be taken into account
 - Ionosphere
 - Dry troposphere
 - Wet troposphere

Ionospheric correction

- Caused by free electrons in the ionosphere
- Frequency dependent so it can be measured with a dual frequency altimeter:

```
ERS-1/2 × Topex ✓ Jason-1/2 ✓ Envisat ✓ (only up to 17/01/08) GFO × Cryosat × AltiKa ×
```

- Otherwise use a model or other observations from another dual frequency radar system (GPS, DORIS)
- Average value 45mm, s.d. 35mm
- Depends on solar cycle and time of day
- GIM (based on GPS, produced by JPL) is a good product to use for single-frequency altimeters

Solar Cycle Variations

http://spaceodyssey.dmns.org/media/13466/solar-cycle-data.png

Typical Iono correction values (mm)

Low solar activity

High solar activity

Dry Tropospheric Correction

- Due to O₂ molecules in the atmosphere
- Derived from atmospheric pressure (from met models) by:

```
Dry_trop = 2.277 p (1 + 0.0026 cos(2 \times latitude))
(mm) (hPa)
```

Average value 2300 mm, s.d. 30 mm

Winter DJF Air Pressure Mean (hPa)

Standard deviation

Standard Deviation

Wet Tropospheric Correction

- Caused by water vapour in the atmosphere
- Obtained by microwave radiometer on satellite
 - two frequency on ERS-1/2 and Envisat
 - three frequency on T/P and Jason-1/2
- Or from weather forecasting models (ECMWF)
- Or (new!) from GPS measurements
- This is a difficult correction due to the high temporal and spatial variability of water vapour
- Average value 150 mm, s.d. ~50 mm

Tropospheric water vapour from SSM/I Mean (g/m²)

Standard deviation

Atmospheric corrections - summary esa

- Ionospheric correction: 2-20 cm [+/- 3 cm]
 - Caused by presence of free electrons in the ionosphere
 - Use model or measure using dual frequency altimeter
- Dry tropospheric correction: 2.3 m [+/- 1-2 cm]
 - Caused by oxygen molecules
 - Model the correction accurately using surface atmospheric pressure
- Wet tropospheric correction: 5-35 cm [+/- 3-6 cm]
 - Caused by clouds and rain (variable)
 - Measure H₂O with microwave radiometer
 - Or use weather model predictions

Sea State Bias Corrections

- Tracker bias
 - Problem with "tracking" the pulse when the sea is rough
- Electromagnetic Bias
 - Radar return from the troughs is stronger than from the crests
- First approx: empirical correction based on H_s (~5%)

State of the art in sea state bias

- There is as yet no theoretical method for estimating the sea state bias.
- We are therefore forced to use empirical methods
- We find the function of H_s (and U₁₀ that is wind) that minimises the altimeter crossover differences or the differences w.r.t in situ observation (from wave buoys)

Parametric vs non-parametric

- With parametric methods we have a specified function for the SSB and estimate the parameters of this function, e.g. the BM4 model used for TOPEX
 - → Then we use the fitted function
- With non-parametric methods we compile statistics and smooth the resulting 2-d histogram

→ Then we use the histogram as look-up table

An example non-parametric SSB

Example of TOPEX Error Budget for 1-Hz esa measurement (from Chelton et al 2001)

Source	Error
Instrument Noise	1.7cm
Ionosphere	0.5cm
EM Bias	2.0cm
Skewness	1.2cm
Dry Troposphere	0.7cm
Wet Troposphere	1.1cm
Orbit	2.5cm
Total	4.1cm

Now at ~2 cm level!!

Courtesy of Lee-Lueng Fu., NASA

All the processing seen so far is to get a good SSH=orbit-range

Reference Ellipsoid

Next: what is there in the SSH?