

A short course on Altimetry

Paolo Cipollini¹, Helen Snaith²

¹ National Oceanography Centre, Southampton, U.K. ² British Oceanographic Data Centre, Southampton, U.K.

with contributions by Peter Challenor, Ian Robinson, R. Keith Raney + some other friends...

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

- Rationale
 - why we need altimetry
- A1 Principles of altimetry
 - how it works in principle
 - New techniques
- A2 Altimeter Data Processing
 - From satellite height to surface height: corrections
 - (or how it is made accurate)
- A3 Altimetry and Oceanography
- A4 Geophysical parameters and applications
 - what quantities we measure
 - how we use them!

Rationale for Radar Altimetry over the ocean esa

- Climate change
 - oceans are a very important component of the climate system
- Altimeters monitor currents / ocean circulation...
- ...that can be used to estimate heat storage and transport
- ... and to assess the interaction between ocean and atmosphere
- We also get interesting byproducts: wind/waves, rain

The Climate System

courtesy N. Noreiks, L. Bengtsson, MPI

AV/Global/0101

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

The sea is not flat....

3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING 23-27 September 2013 | NMCI | Cork, Ireland

BEAUFORT

P. Cipollini, H. Snaith – A short course on Altimetry

Altimetry 1 – principles & instruments

Basic Principles

- The altimeter is a radar at vertical incidence
- The signal returning to the satellite is from quasispecular reflection
- Measure distance between satellite and sea (range)
- Determine position of satellite (precise orbit)
- Hence determine height of sea surface
- Oceanographers require height relative to geoid

Measuring ocean topography with rada esa

- Measure travel time, 2T, from emit to return
- $h = T \times c$ ($c \approx 3 \times 10^8$ m/s)
- Resolution to ~1cm
 would need a pulse of 3x10⁻¹⁰s
 (0.3 nanoseconds)
- 0.3ns... That would be a pulse bandwidth of >3 GHz... Impossible!

Chirp, chirp....

• So we have to use tricks: chirp pulse compression

 It is also necessary to apply a number of corrections for atmospheric and surface effects

Beam- and Pulse- Limited Altimeters

- In principle here are two types of altimeter:
 - beam-limited
 - pulse-limited

Beam-Limited Altimeter

• Return pulse is dictated by the width of the beam

Beam-Limited altimeter

 A plot of return power versus time for a beamlimited altimeter looks like the *heights* of the specular points, i.e. the probability density function (pdf) of the specular scatterers

Beam-Limited: technological problems @esa

- Narrow beams require very large antennae and are impractical in space
 - For a **5 km** footprint a beam width of about **0.3°** is required.
 - For a 13.6 GHz altimeter this would imply a **5 m** antenna.
- Even more important: highly sensitivity to mispointing, which affects both amplitude and measured range
- New missions like ESA's CryoSat (launched 8 Apr 2010) and Sentinel-3 use synthetic aperture techniques (delay-Doppler Altimeter) that "can be seen as" a beam-limited instrument in the alongtrack direction.

Pulse-Limited Altimeter

 In a pulse-limited altimeter the shape of the return is dictated by the length (width) of the pulse

BEAUFORT

The "pulse-limited" footprint

- Full illumination when rear of pulse reaches the sea – then area illuminated stays constant
- Area illuminated has radius $r = \sqrt{2hc}$
- Measure interval between mid-pulse emission and time to reach half full height

BEAUFORT

 A plot of return power versus time for a pulselimited altimeter looks like the *integral* of the heights of the specular points, i.e. the cumulative distribution function (cdf) of the specular scatterers

- All the microwave altimeters flown in space to date, including very successful TOPEX/Poseidon, ERS-1 & 2 RA & Envisat RA-2, are pulse-limited except....
- ... laser altimeters (like GLAS on ICESAT) are beam-limited
- ...and a Delay-Doppler Altimeter "can be seen" as beam-limited in the along-track direction
- To understand the basics of altimetry we will focus on the pulse limited design

Basics of pulse-limited altimeter theory esa

- We send out a thin shell of radar energy which is reflected back from the sea surface
- The power in the returned signal is detected by a number of gates (bins) each at a slightly different time

Shell of energy from the pulse

23-27 September 2013 | NMCI | Cork, Ireland

If we add waves ...

The area illuminated or 'effective footprin esa

- The total area illuminated is related to the significant wave height noted as SWH [or Hs] (SWH ≈ 4 × std of the height distribution)
- The formula is

$$\frac{\rho R_0 \left(ct+2H_s\right)}{1+R_0/R_E}$$

Where

c is the speed of light / is the pulse length H_s significant wave height R^s the altitude of the satellite $R^o_{_{\!\!E}}$ the radius of the Earth

Diameters of the effective footprint @esa

<i>H_s</i> (m)	ERS-2/1, ENVISAT Effective footprint (km) (800 km altitude)	TOPEX, Jason-1/2 Effective footprint (km) (1335 km altitude)
0	1.6	2.0
1	2.9	3.6
3	4.4	5.5
5	5.6	6.9
10	7.7	9.6
15	9.4	11.7
20	10.8	13.4

From Chelton et al (1989)

The Brown Model

 Assume that the sea surface is a perfectly conducting rough mirror which reflects only at specular points, i.e. those points where the radar beam is reflected directly back to the satellite

The Brown Model - II

 Under these assumptions the return power is given by a three fold convolution

$$P_r(t) = P_{FS}(t) * P_{PT}(t) * P_H(-z)$$

Where

 $P_r(t)$ is the returned power

 $P_{FS}(t)$ is the flat surface response

 $P_{PT}(t)$ is the point target response

 $P_{H}(-z)$ is the pdf of specular points on the sea surface

The Flat Surface Response Function esa

- The Flat surface response function is the response you would get from reflecting the radar pulse from a flat surface.
- It looks like

$$P_{FS}(t) = U(t - t_0) \cdot G(t)$$

Where

U(t) is the Heaviside function

U(t) = 0 for t < 0; U(t) = 1 otherwise

G(t) is the two way antenna gain pattern

The Point Target Response Functionesa

- The point target response (PTR) function is the shape of the transmitted pulse
- Its true shape is given by

$$P_{PT}(t) = \frac{\hat{e}}{\hat{e}} \frac{\sin\left(\frac{\rho t}{t}\right)\hat{u}^2}{\frac{\rho t}{t}\hat{u}\hat{u}}$$

For the Brown model we approximate this with a Gaussian.

The Brown Model - III

$$P_{r}(t) = P_{FS}(0) h P_{T} \sqrt{2\rho} \frac{S_{p} \stackrel{\acute{e}}{e}}{2 \stackrel{\acute{e}}{e}} + erf \stackrel{\grave{i}}{f} \frac{(t - t_{0})}{\sqrt{2}S_{c}} \stackrel{\ddot{u}\dot{u}}{\not{y}\dot{u}} \quad \text{for } t < t_{0}$$

$$P_{r}(t) = P_{FS}(t - t_{0})hP_{T}\sqrt{2\rho}\frac{S_{p}\hat{e}}{2\hat{e}}\hat{e}^{\dagger} + erf\hat{i}\frac{(t - t_{0})}{\sqrt{2}S_{c}}\hat{y}\hat{u}$$
 for $t^{3}t_{0}$

$$S_c = \sqrt{S_p^2 + \frac{4S_s^2}{c^2}} \qquad \qquad S_s \gg \frac{SWH}{4}$$

$$P_{FS}(t) = \frac{G_0^2 / {}_R^2 c S_0}{4(4\rho)^2 L_p h^3} \exp\left[\hat{i} - \frac{4}{g}\sin^2 x - \frac{4ct}{gh}\cos 2x \oint I_0 \oint \frac{4}{g} \sqrt{\frac{ct}{h}}\sin 2x + \frac{6}{g}\sin^2 x - \frac{4ct}{gh}\cos 2x \oint I_0 \oint \frac{4}{g} \sqrt{\frac{ct}{h}}\sin 2x + \frac{6}{g}\sin^2 x + \frac{4ct}{gh}\cos^2 x + \frac{6}{g}\sin^2 x + \frac{6}{$$

where

$$erf(t) = \frac{2}{\sqrt{\rho}} \,\check{0}_0^t e^{-x^2} \,dx$$

(compare this with the Normal cumulative distribution function)

$$F(t) = \frac{1}{\sqrt{2\rho}} \grave{0}_{-4}^{t} e^{\frac{-x^{2}}{2}} dx$$
$$F(x) = \frac{1}{2} \stackrel{\acute{e}}{e} 1 + erf \stackrel{\&}{c} \frac{x}{\sqrt{2}} \stackrel{\ddot{o}}{\psi} \stackrel{\acute{u}}{\psi}$$

 I_0 () is a modified Bessel function of the first kind

- SWH significant wave height
- t₀ the time for the radar signal to reach the Earth and return to the satellite
 - we then convert into range and finally into height see in the next slides
- σ_0 the radar backscatter coefficient
 - note this is set by the roughness at scales
 comparable with radar wavelength, i.e. cm, therefore
 it is (in some way) related to wind
- sometimes **mispointing angle** ξ can be also estimated from the waveforms

The Brown Model – measured parameters @esa

$$P_{r}(t) = P_{FS}(0) h P_{T} \sqrt{2\rho} \frac{S_{p} \acute{e}}{2} \acute{e}^{\dagger} + erf \acute{f} \frac{(t - t_{0})}{\sqrt{2}S_{c}} \dddot{\psi}^{\dagger} \quad \text{for } t < t_{0}$$

$$P_r(t) = P_{FS}\left(t - \frac{t_0}{t_0}\right) h P_T \sqrt{2\rho} \frac{S_p \hat{e}}{2 \hat{e}} + erf \hat{i} \frac{(t - \frac{t_0}{t_0})}{\sqrt{2S_c}} \hat{y} \hat{y} \hat{u} \quad \text{for } t \, {}^3 t_0$$

$$P_{FS}(t) = \frac{G_0^2 / {}_R^2 c S_0}{4(4\rho)^2 L_p h^3} \exp \left[\frac{1}{\rho} - \frac{4}{g} \sin^2 x - \frac{4ct}{gh} \cos \frac{2x}{\rho} \int_{\rho}^{\omega} \frac{4}{\rho} \frac{4}{\rho} \sqrt{\frac{ct}{h}} \sin \frac{2x}{\rho} \right]$$

What are the other parameters?

- λ_R is the radar wavelength
- L_p is the two way propagation loss
- h is the satellite altitude (nominal)
- G_0 is the antenna gain
- γ is the antenna beam width
- σ_p is the pulse width
- η is the pulse compression ratio
- P_T is the peak power
- ξ (as we said) is the mispointing angle

Theoretical waveforms – effect of SWH esa

23-27 September 2013 | NMCI | Cork, Ireland

The effect of mispointing

t

Noise on the altimeter

- If we simply use the altimeter as a detector we will still have a signal - known as the thermal noise.
- The noise on the signal is known as fading noise
- It is sometimes assumed to be constant, sometimes its mean is measured
- For most altimeters the noise on the signal is independent in each gate and has a negative exponential distribution.

Exponential distribution

pdf

$$f(x) = \frac{1}{Q} e^{-\frac{x}{q}} \qquad 0 < x < \infty$$

- Mean = θ
- Variance = θ^2

Exponential pdf

BEAUFORT RESEARCH

- For a negative exponential distribution the variance is equal to the square of the mean. Thus the individual pulses are very noisy!
- ⇒ We need a lot of averaging to achieve good Signal to Noise Ratio
- The pulse repetition frequency is thousands per second
 - 1020 for ERS-1/2, 1800 for Jason & Envisat, 4500 for Topex
- Usually data are transmitted to the ground at ~20Hz and then averaged to ~1 Hz

A single pulse

How altimeters really work

- It is very difficult (if not impossible) to generate a single-frequency pulse of length 3 ns
- It is possible to do something very similar in the frequency domain using a chirp: modulating the frequency of the carrier wave in a linear way

The equivalent pulse width = 1/chirp bandwidth

Full chirp deramp - 1

- A chirp is generated
- Two copies are taken
- The first is transmitted
- The second is delayed so it can be matched with the reflected pulse

Full Chirp Deramp - 2

- The two chirps are mixed.
- A point above the sea surface gives returns at frequency lower than would be expected and vice versa
- So a 'Brown' return is received but with frequency rather than time along the x axis

A real waveform - from the RA-2 altimeter on ESA's Envisat

"Retracking" of the waveforms

= fitting the waveforms with a waveform model, therefore estimating the parameters

Altimeters flown in space

Height	inclination	accuracy	repeat period	
GEOS-3 (04/75 – 12/78)				
845 km	115 deg	0.5 m	-	
Seasat (06/78 – 09/78)				
800 km	108 deg	0.10 m	3 days	
Geosat (03/85 – 09/89)				
785.5 km	108.1 deg	0.10 m	17.5 days	
ERS-1 (07/91 – 03/2000); ERS-2 (04/95 – 09/2011)				
785 km	98.5 deg	0.05 m	35 days	
TOPEX/Poseidon (09/92 – 10/2005); Jason-1 (12/01 – 06/2013); Jason-2 (06/08 – present)				
1336 km	66 deg	0.02 m	9.92 days	
Geosat follow-on (GFO) (02/98 – 09/2008)				
800 km	108 deg	0.10 m	17.5 days	
Envisat (03/02 – 04/12)				
785 km	98.5 deg	0.03 m	35 days	
CryoSat-2 (04/10 – present) [delay-Doppler]				
717 km	92 deg	0.05 m	369 days (30d sub-cycle)	
SARAL/AltiKa (02/13 – present) [Ka-band]				
785 km	98.5 deg	0.02 m	35 days	

1-D (along-track) measurement

TOPEX/POSEIDON ground tracks over a 10-day cycle

NMCI Internet Content Content

Example: Sea Surface Height along the ground track of a satellite altimeter

TOPEX/POSEIDON pass 029

Radar Altimeters: Now and Then

Cryosat-2

- ESA mission; launched 8 April 2010
- LEO, non sunsynchronous
 - 369 days repeat (30d sub-cycle)
 - Mean altitude: 717 km
 - Inclination: 92°
- Prime payload: SIRAL
 - SAR/Interferometric Radar Altimeter (delay/Doppler)
 - Modes: Low-Res / SAR / SARIn
- Ku-band only; no radiometer
- Design life:
 - 6 months commissioning + 3 years

Conventional altimeter footprint scan

BEAUFORT

Delay-Doppler Altimetry (aka SAR altimetry)

BEAUFORT

DDA (SAR-mode) Footprint Characteristic

BEAUFORT

SARAL / AltiKa

- Satellite: Indian Space Research Organization (ISRO)
 - carrying AltiKa altimeter by CNES
 - Ka-band 0.84 cm (viz 2.2 cm at Ku-band)
 - Bandwidth (480 MHz) => 0.31 ρ (viz 0.47)
 - Otherwise "conventional" RA
 - PRF ~ 4 kHz (viz 2 kHz at Ku-band)
 - Full waveform mode
- payload includes dual-frequency radiometer
- Sun-synchronous, 35-day repeat cycle (same as ERS/Envisat)
- Navigation and control: DEM and DORIS
- Launched February 2013

GNSS (GPS/Gallieo) Reflectometry HOW GNSS-R WORKS