A short course on Altimetry

Paolo Cipollini ${ }^{1}$, Helen Snaith ${ }^{2}$

${ }^{1}$ National Oceanography Centre, Southampton, U.K.
${ }^{2}$ British Oceanographic Data Centre, Southampton, U.K.
with contributions by Peter Challenor, Ian Robinson, R. Keith Raney + some other friends...

National
Oceanography Centre
NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

- Rationale
- why we need altimetry
- A1 - Principles of altimetry
- how it works in principle
- New techniques
- A2 - Altimeter Data Processing
- From satellite height to surface height: corrections
- (or how it is made accurate)
- A3 - Altimetry and Oceanography
- A4 - Geophysical parameters and applications
- what quantities we measure
- how we use them!

Rationale for Radar Altimetry over the oceanse esa

- Climate change
- oceans are a very important component of the climate system
- Altimeters monitor
currents / ocean circulation...
- ...that can be used to estimate heat storage and transport
- ... and to assess the interaction between ocean and atmosphere
- We also get interesting byproducts: wind/waves, rain

The Climate System

The sea is not flat....

Cycle 137

P. Cipollini, H. Snaith - A short course on Altimetry

Altimetry 1 -

principles \& instruments

Basic Principles

- The altimeter is a radar at vertical incidence
- The signal returning to the satellite is from quasispecular reflection
- Measure distance between satellite and sea (range)
- Determine position of satellite (precise orbit)
- Hence determine height of sea surface
- Oceanographers require height relative to geoid

DT = Orbit - Range - Geoid

Measuring ocean topography with radareesa

- Measure travel time, 2T, from emit to return
- $h=T \times 0\left(c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
- Resolution to $\sim 1 \mathrm{~cm}$ would need a pulse of 3×10^{-10} s
(0.3 nanoseconds)
- 0.3ns... That would be a pulse bandwidth of $>3 \mathrm{GHz}$... Impossible!

Quasi-Specular reflection

- So we have to use tricks: chirp pulse compression

- It is also necessary to apply a number of corrections for atmospheric and surface effects

Beam- and Pulse- Limited Altimeters

- In principle here are two types of altimeter:
- beam-limited
- pulse-limited

Beam-Limited Altimeter

- Return pulse is dictated by the width of the beam

Beaufort

Beam-Limited altimeter

- A plot of return power versus time for a beamlimited altimeter looks like the heights of the specular points, i.e. the probability density function (pdf) of the specular scatterers

Beam-Limited: technological problems eesa

- Narrow beams require very large antennae and are impractical in space
- For a $\mathbf{5} \mathbf{~ k m}$ footprint a beam width of about $0 . \mathbf{3}^{\circ}$ is required.
- For a 13.6 GHz altimeter this would imply a $5 \mathbf{m}$ antenna.
- Even more important: highly sensitivity to mispointing, which affects both amplitude and measured range
- New missions like ESA's CryoSat (launched 8 Apr 2010) and Sentinel-3 use synthetic aperture techniques (delay-Doppler Altimeter) that "can be seen as" a beam-limited instrument in the alongtrack direction.

Pulse-Limited Altimeter

- In a pulse-limited altimeter the shape of the return is dictated by the length (width) of the pulse

The "pulse-limited" footprint

- Full illumination when rear of pulse reaches the sea - then area illuminated stays constant
- Area illuminated has radius $r=\sqrt{ }(2 h c /)$
- Measure interval between mid-pulse emission and time
 to reach half full height

-eesa

- A plot of return power versus time for a pulselimited altimeter looks like the integral of the heights of the specular points, i.e. the cumulative distribution function (cdf) of the specular scatterers

The tracking point is the half power point of the curve
time

Pulse- vs Beam-Limited

- All the microwave altimeters flown in space to date, including very successful TOPEX/Poseidon, ERS-1 \& 2 RA \& Envisat RA2, are pulse-limited except....
- ... laser altimeters (like GLAS on ICESAT) are beam-limited
- ...and a Delay-Doppler Altimeter "can be seen" as beam-limited in the along-track direction
- To understand the basics of altimetry we will focus on the pulse limited design

Basics of pulse-limited altimeter theoryeesa

- We send out a thin shell of radar energy which is reflected back from the sea surface
- The power in the returned signal is detected by a number of gates (bins) each at a slightly different time

Shell of energy from the pulse

Sea Surface

Sea Surface

The area illuminated or 'effective footprinteesa

- The total area illuminated is related to the significant wave height noted as SWH [or Hs] (SWH $\approx 4 \times$ std of the height distribution)
- The formula is

$$
\frac{R_{0}\left(c+2 H_{s}\right)}{1+R_{0} / R_{E}}
$$

Where
c is the speed of light is the pulse length
H_{s} significant wave height
R^{s} the altitude of the satellite
R_{E}^{0} the radius of the Earth

Diameters of the effective footprint Cesa

$H_{s}(\mathrm{~m})$	ERS-2/1, ENVISAT Effective footprint (km) $(800 \mathrm{~km}$ altitude)	TOPEX, Jason- $1 / 2$ Effective footprint (km) $(1335 \mathrm{~km}$ altitude)
0	1.6	2.0
1	2.9	3.6
3	4.4	5.5
5	5.6	6.9
10	7.7	9.6
15	9.4	11.7
20	10.8	13.4

From Chelton et al (1989)

The Brown Model

- Assume that the sea surface is a perfectly conducting rough mirror which reflects only at specular points, i.e. those points where the radar beam is reflected directly back to the satellite

The Brown Model - II

- Under these assumptions the return power is given by a three fold convolution

$$
P_{r}(t)=P_{F S}(t) * P_{P T}(t) * P_{H}(z)
$$

Where
$P_{r}(t)$ is the returned power
$P_{F S}(t)$ is the flat surface response
$P_{P T}(t)$ is the point target response
$P_{H}(-z)$ is the pdf of specular points on the sea surface

The Flat Surface Response Functiogesa

- The Flat surface response function is the response you would get from reflecting the radar pulse from a flat surface.
- It looks like

$$
P_{F S}(t)=U\left(\begin{array}{ll}
t & t_{0}
\end{array}\right) \quad G(t)
$$

Where
$U(t)$ is the Heaviside function

$$
U(t)=0 \text { for } t<0 ; U(t)=1 \text { otherwise }
$$

$G(t)$ is the two way antenna gain pattern

The Point Target Response Functionesa

- The point target response (PTR) function is the shape of the transmitted pulse
- Its true shape is given by

$$
P_{P T}(t)=\frac{\sin (t /)^{2}}{t /}
$$

- For the Brown model we approximate this with a Gaussian.

The Brown Model - III

$$
\begin{aligned}
& P_{r}(t)=P_{F S}(0) \quad P_{T} \sqrt{2} \frac{p}{2} 1+\operatorname{erf} \frac{\left(t t_{0}\right)}{\sqrt{2}} \quad \text { for } t<t_{0} \\
& P_{r}(t)=P_{F S}\left(t \quad t_{0}\right) P_{T} \sqrt{2} \frac{p}{2} 1+\operatorname{erf} \frac{\left(t t_{0}\right)}{\sqrt{2}} \quad \text { for } t \quad t_{0} \\
& { }_{c}=\sqrt{{ }_{p}^{2}+\frac{4{ }_{s}^{2}}{c^{2}}} \quad \quad s \frac{S W H}{4} \\
& P_{F S}(t)=\frac{G_{0}^{2}{ }_{R}^{2} c{ }_{0}}{4(4)^{2} L_{p} h^{3}} \exp \quad \underline{4} \sin ^{2} \quad \frac{4 c t}{h} \cos 2 \quad I_{0} \underline{4} \sqrt{\frac{c t}{h}} \sin 2 \div
\end{aligned}
$$

where

$$
\operatorname{erf}(t)=\frac{2}{\sqrt{ }}{ }_{0}^{t} e^{x^{2}} d x
$$

(compare this with the Normal cumulative distribution function)

$$
\begin{aligned}
& (t)=\frac{1}{\sqrt{2}}{ }^{t} e^{\frac{x^{2}}{2}} d x \\
& (x)=\frac{1}{2} 1+\text { erf } \frac{x}{\sqrt{2}} \div
\end{aligned}
$$

$I_{0}()$ is a modified Bessel function of the first kind

What are we measuring?

- SWH - significant wave height
- t_{0} - the time for the radar signal to reach the Earth and return to the satellite
- we then convert into range and finally into height see in the next slides
- σ_{0} - the radar backscatter coefficient
- note this is set by the roughness at scales comparable with radar wavelength, i.e. cm, therefore it is (in some way) related to wind
- sometimes mispointing angle ξ can be also estimated from the waveforms

The Brown Model - measured parameters

$$
\begin{aligned}
& P_{r}(t)=P_{F S}(0) P_{T} \sqrt{2} \frac{p}{2} 1+\operatorname{erf} \frac{\left(t t_{0}\right)}{\sqrt{2}{ }_{c}} \quad \text { for } t<t_{0} \\
& P_{r}(t)=P_{F S}\left(\begin{array}{llll}
t & \left.t_{0}\right) & P_{T} \sqrt{2} & \frac{p}{2} 1+\operatorname{erf} \frac{\left(t t_{0}\right)}{\sqrt{2}} \quad \text { for } t \quad t_{0} \\
{ }_{c}=\sqrt{{ }_{p}^{2}+\frac{4{ }_{s}^{2}}{c^{2}}} & s \frac{S W H}{4} \\
P_{F S}(t)=\frac{G_{0}^{2}{ }_{R}^{2} c{ }_{0}}{4(4)^{2} L_{p} h^{3}} \exp & \frac{4}{-\sin ^{2}} \frac{4 c t}{h} \cos 2 & I_{0}-\sqrt{\frac{c t}{h}} \sin 2 \div
\end{array}\right.
\end{aligned}
$$

What are the other parameters?

- $\lambda_{\mathbf{R}}$ is the radar wavelength
- $\mathbf{L}_{\mathbf{p}}$ is the two way propagation loss
- \mathbf{h} is the satellite altitude (nominal)
- $\mathrm{G}_{\mathbf{0}}$ is the antenna gain
- γ is the antenna beam width
- σ_{p} is the pulse width
- $\boldsymbol{\eta}$ is the pulse compression ratio
- $\mathbf{P}_{\mathbf{T}}$ is the peak power
- ξ (as we said) is the mispointing angle

Theoretical waveforms - effect of SWHeesa

The effect of mispointing

23-27 September 2013 | NMCI | Cork, Ireland

Noise on the altimeter

- If we simply use the altimeter as a detector we will still have a signal - known as the thermal noise.
- The noise on the signal is known as fading noise
- It is sometimes assumed to be constant, sometimes its mean is measured
- For most altimeters the noise on the signal is independent in each gate and has a negative exponential distribution.

Exponential distribution

- pdf

$$
f(x)=\frac{1}{x} e^{\frac{x}{-}} \quad 0<x<\infty
$$

- Mean = θ
- Variance $=\theta^{2}$

Exponential pdf

23-27 September 2013 | NMCI | Cork, Ireland

Averaging the noise

- For a negative exponential distribution the variance is equal to the square of the mean. Thus the individual pulses are very noisy!
\Rightarrow We need a lot of averaging to achieve good Signal to Noise Ratio
- The pulse repetition frequency is thousands per second
- 1020 for ERS-1/2, 1800 for Jason \& Envisat, 4500 for Topex
- Usually data are transmitted to the ground at $\sim 20 \mathrm{~Hz}$ and then averaged to $\sim 1 \mathrm{~Hz}$

A single pulse

23-27 September 2013 | NMCI | Cork, Ireland

How altimeters really work

- It is very difficult (if not impossible) to generate a single-frequency pulse of length 3 ns
- It is possible to do something very similar in the frequency domain using a chirp: modulating the frequency of the carrier wave in a linear way

Frequency

13.6 GHz

- The equivalent pulse width = $1 /$ chirp bandwidth

Full chirp deramp - 1

- A chirp is generated
- Two copies are taken
- The first is transmitted
- The second is delayed so it can be matched with the reflected pulse

Full Chirp Deramp - 2

- The two chirps are mixed.
- A point above the sea surface gives returns at frequency lower than would be expected and vice versa
- So a 'Brown' return is received but with frequency rather than time along the x axis

A real waveform - from the RA-2

 altimeter on ESA's EnvisatEnvisat (18 Hz Ku) waveform

How do we estimate the various parameters from this?

Ku band, 13.5 Ghz, 2.1 cm
Bin number

Beaufort
= fitting the waveforms with a waveform model, therefore estimating the parameters

Altimeters flown in space

1-D (along-track) measurement

TOPEX/POSEIDON ground tracks over a 10-day cycle

Example: Sea Surface Height along the ground

 track of a satellite altimeter

Radar Altimeters: Now and Then

Swath altimetry

High accuracy SSH (reference missions) from mid-inclination orbit

Cryosat-2

- ESA mission; launched 8 April 2010
- LEO, non sunsynchronous
- 369 days repeat (30d sub-cycle)
- Mean altitude: 717 km
- Inclination: 92°
- Prime payload: SIRAL
- SAR/Interferometric Radar Altimeter (delay/Doppler)
- Modes: Low-Res / SAR / SARIn
- Ku-band only; no radiometer
- Design life:
- 6 months commissioning + 3 years

Conventional altimeter footprint scan

Beaufort

Delay-Doppler Altimetry (aka SAR altimetry)

R.K. Raney, IEEE

TGARS, 1998

DDA (SAR-mode) Footprint Characteristic

SARAL / AltiKa

- Satellite: Indian Space Research Organization (ISRO)
- carrying AltiKa altimeter by CNES
- Ka-band 0.84 cm (viz 2.2 cm at Ku-band)
- Bandwidth $(480 \mathrm{MHz})=>0.31 \rho(\mathrm{viz} 0.47)$
- Otherwise "conventional" RA
- PRF ~ 4 kHz (viz 2 kHz at Ku-band)
- Full waveform mode
- payload includes dual-frequency radiometer
- Sun-synchronous, 35-day repeat cycle (same as ERS/Envisat)
- Navigation and control: DEM and DORIS
- Launched February 2013

