

→ 3rd ESA ADVANCED TRAINING ON OCEAN REMOTE SENSING

Measuring sea surface temperature from space

Prof. Chris Merchant
University of Reading
UK

Schedule for the day

- Introduction to sea surface temperature
- Measuring SST from space
- Operational systems for SST
- Bilko practical
- Observing and modelling SST across scales
- Bilko practical
- Closing session

Sea-surface temperature [°C]

• Benjamin Franklin, 1768

Concerned about his wine?

Normal Conditions

El Niño Conditions

El Nino Impacts La Nina Impacts

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

WARM EPISODE RELATIONSHIPS JUNE - AUGUST

COLD EPISODE RELATIONSHIPS JUNE - AUGUST

http://www.gbrmpa.gov.au/corp_site/info_services/science/climate_change/coral_bleaching.html

Climatic Research Unit UEA

Figure 3. Estimates of Earth's heat balance components (10^{22} J) for the 1955–1998 period.

Where do in situ observations come from now?

How has SST been measured? Routine observations by naval shipping

HMS Torch (Alert class sloop)

www.oldweather.org

Buckets

ECMWF Data Coverage (All obs DA) - BUOY 11/SEP/2010; 12 UTC Total number of obs = 10417

Neglected subtleties in definition of SST

Radiometric Sensitivity Planck's Radiation Law says it all!

Planck Function – Temperature Dependence

Satellite SSTs at a glance

Infra-red observations

Spatial resolution: 1 to 10 km

Single pixel precision: 0.15 to 0.5 K

Accuracy (bias): <0.1 K to few tenths

Limitations: cloud cover

 Temporal resolution per sensor (not accounting for clouds): sub-hourly (geo), ~twice-daily (polar)

Passive microwave observations

Spatial resolution: 50 to 100 km

Single pixel precision: 0.5 K

Accuracy (bias): few tenths

• Limitations: rain, 50 km margin around land and ice, radio frequency interference

 Temporal resolution per sensor (not accounting for contaminants): ~twice daily

• Since 1997

Since 1981

top of atmosphere BT < SST

Split window SST equation

$$(SST - T_{11}) = m(T_{11} - T_{12}) + c$$

$$SST = T_{11} + m(T_{11} - T_{12}) + c$$

Anding and Kauth, 1970

(83 citations)

A procedure is derived for obtaining improved estimates of water surface temperature by ... simultaneous radiometric measurements in two wavelength intervals ... to approximately ±0.15°C.

Generalisation

$$\hat{x} = (a + \mathbf{a}^T)\mathbf{y}$$

Empirical regression to matched *in situ* observations

Regression based on radiative transfer simulations

Most products except ...

... ATSRs,
Meteo-France,
NOAA-GOES

Derive coefficients ...

Regional annual biases

– remote sensing is never simple!

Merchant et al., 2009, GRL (GL039843)

More modern approach

$$x = x_b + \mathbf{G}(\mathbf{y} - \mathbf{F}(\mathbf{x}))$$

F is a radiative transfer model
x is the state of the ocean and atmosphere so F(x) contains the BTs we expect
y contains the observed BTs
G is a gain matrix that determines how x_b is updated to give the retrieved SST

Various options for G: optimal estimation most common

Classic Images from ATSR

The Gulf Stream

ATSR-2 Image, $\hbar = 3.7 \mu m$

Review the steps to get SST using a physical retrieval

