

6th Satellite Moisture Validation Workshop - Perugia 7/9 June 2022

Influence of *in-situ* probes characteristics on SMOS validation results

François Gibon^{1*}, Arnaud Mialon¹, Philippe Richaume¹, Yann H. Kerr¹, Nemesio Rodriguez-Fernandez¹, Ali Mahmoodi¹, Wouter A. Dorigo², Alexander Gruber², Alexander Boresch³, Irene Himmelbauer², Daniel Aberer², Raffaele Crapolicchio⁴, Roberto Sabia⁴

¹CESBIO, Université de Toulouse, CNES/CNRS/INRAe/IRD/UPS, Toulouse, France ²Technische Universität Wien, Department of Geodesy and Geoinformation, Vienna, Austria ³Applied Science, Software and Technologie (AWST) gmbh, Vienna, Austria ⁴ESRIN - ESA Center for Earth Observation, Frascaty, Italy * francois.gibon@univ-tlse3.fr

1. Context Fiducial Reference Measurement for Soil Moisture (FRM4SM) is an ESA project focusing on the validation strategy of satellite based soil moisture. In this context, a partnership between the reference network **ISMN** (TUWIEN), the validation platform **QA4SM** (AWST) and the **SMOS** team (**CESBIO**) is conducted to investigate : the different validation strategies (spatial sampling, temporal aliasing), evaluate the SMOS performance regarding different validation conditions, quantify errors due to the spatiotemporal difference SMOS vs. *in-situ*...

2. Objectives

3. Data & methods

Data

Potential validation issues Spatial Temporal resolution resolution

- Better understand and represent the SMOS SM uncertainties • Quantify on SMOS performances of :
- the probes set-up;
- the SMOS footprint content;
- the geophysical process scale difference.

Comparaison of SMOS vs. ISMN

• One aim of this project is to evaluate the SMOS Level 2 v700 soil moisture product with the ISMN network used as ground reference (see table \rightarrow)

SMOS L2V700	Ø43km in average	2/3days	Sensitive to the footprint content, RFI
ISMN	cm² to m² depending on the technology, location	~min	Quality of the calibration, Installation, technology representativeness

 To quantify the agreement between SMOS and the ISMN network a validation process is proceeded as follows :

With (1) the spatial collocation between the *in-situ* probes and the SMOS node defined as the nearest neighbor, and (2) a limit of $\Delta t \leq 30$ min for the time collocation of the two data.

- The statistical scores (R, RMSE, bias, ubRMSE) are analysed according to :
 - a) Probes depth influence;
 - **b)** SMOS footprint content influence;

c) Relations were defined between the surface conditions and the validation scores in order to map range of expected uncertainties

b) SMOS footprint content influence

a) Probes depth influence

4. Results & discussions

• The analyses of the scores as a function of the probes depth show a better agreement when the probes are within the first 10 centimeters of the soils, in respect to L-band soil penetration.

• Each validation scores are related to a specific surface conditions, described using the auxiliary database of the SMOS L2 processor \rightarrow

• The analyses 1 show scores performances improvement when the footprint contains a minimum of vegetation, topography, and water, and when the soil has more sand than clay and with a high bulk density. The regressions defined here are used to derive the global maps on **c)**.

c) Maps of expected uncertainties • The relations in **b**) are used to derive a map of expected ubRMSE as a function of the surface

60°S

5. Take home message

• SMOS performance assessment 15 sensitive to the *in-situ* probe set-up and surface conditions in the footprint. SMOS and all microwaves SM missions pretend to reach 4-5% uncertainties. The surface conditions to reach this performance are limited to: low vegetation, no topography, no water, high bulk density and sandy soil. • This is the first study to evaluate the uncertainties of SMOS SM at global scale.

6. Reference

• Gibon et al. 2022, Validation conditions influence the evaluation of satellitebased soil moisture: the SMOS and ISMN case study, in prep.