Radiative Transfer in the Atmosphere in the UV, Visible and Near-IR

SCIAMACHY Instrument and SCIATRAN: a Family of Computer Programme

Lecture 2

J. P. Burrows, V. V. Rozanov, A. Rozanov, K.-U. Eichmann, and M. Vountas
Department of the Physics and Chemistry of the Atmosphere
Institute of Environmental Physics and Remote Sensing
University of Bremen, Bremen, Germany
ENVISAT Launch: 1st March 2002, 2:07 CET
In Orbit
SCIAMACHY

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

Viewing Geometry
- Nadir
- Limb
- Occultation

Imaging Spectrometer
- Combination of Prism and 8 high resolution channels (each having its own grating)
- Spectral range from 214 to 2380 nm
- Spectral resolution from 0.2 to 1.5 nm
- 7 broadband polarization measurement Devices PMDs
- On-board calibration H/W
SCI AMACHY Instrument
SCIAMACHY First In-Flight
WLS Spectra from Orbit 252

Comparison of in-flight WLS
measurements with data from
deltaPI and keydata in channel 1

Comparison of in-flight WLS
measurements with data from
deltaPI and keydata in channel 6

Lecture 2: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School
18-29th August 2003 ESA ESRIN Frascati Italy
OCCULTATION MEASUREMENTS

SCIAMACHY

Sun/Moon

Earth
Occultation Measurements

Solar occultation:
• Measurements during sunrise (scans over sun)
• Once per orbit
• Vertical res.: 2.6 km
• Horizontal azimuth: 30 km
• Horizontal in-flight: 400 km
• NH, 65°S-90°S

Lunar occultation:
• Measurements during moonrise
• Moon only visible for about one week per month (highly variable)
• SH, 30°S-90°S
O$_3$ Profile from Solar Occultation compared to POAM III

May 6, 2002

height = 15.5 km, May 6 2002, 7:24 UTC, 52-55 N 183-184 E

observed fitted

J. Meyer & A. Schlesier 07/2002

Preliminary results!

Lecture 2: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School
18-29th August 2003 ESA ESRIN Frascati Italy
NO$_2$: SAGE III / SCIAMACHY / POAM III

Preliminary Data

© G. Taha NASA, A. Schlesier IUP Bremen
Nadir Geometry

- horizontal resolution in across track:
 - 30 - 240 km
 - (60 km typ.)
 - 960 km swath
- horizontal resolution in along track:
 - 30 km
- Observation optimised to match limb with nadir measurements
- Duration of Limb sequence: 60 sec.
- Global coverage: 6 days at the equator
Effects of spatial resolution US

SCIAMACHY NO$_2$ excess: August 2002

Maximum values
- GOME: 7×10^{15} molec/cm2
- SCIA: 17×10^{15} molec/cm2

GOME: only pixels with corresponding SCIA measurements

SCIA: all available raw data for August 2002

Lecture 2: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School
18-29th August 2003 ESA ESRIN Frascati Italy
SO$_2$ from Mount Etna October, 2002

- good general agreement of values
- much better spatial resolution possible over regions with high values
GOM E-SC IA: SH BrO

GOME 2002/09/17

SCIAMACHY 2002/09/17

VC BrO [molec cm^{-2}]

1.5 \times 10^{14}
1.4 \times 10^{14}
1.3 \times 10^{14}
1.2 \times 10^{14}
1.1 \times 10^{14}
1.0 \times 10^{14}
9.0 \times 10^{13}
8.0 \times 10^{13}
7.0 \times 10^{13}
6.0 \times 10^{13}
5.0 \times 10^{13}

Lecture 2: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School
18-29th August 2003 ESA ESRIN Frascati Italy
High chlorine activation within NH polar vortex 2002/2003

SCIA measures approx. 30 min. earlier than GOME
Why do we need accurate RTM?

The Radiance observed at TOA comprises, the extra terrestrial irradiance modified by absorption and scattering along the path of light within the atmosphere.

Key Issues: Wavelength dependent of

i) Surface Spectral Reflectance

ii) Multiple scattering.
Derive the Slant Column Amount of species i:

$$\min \left[\sum_{\lambda} \{ \ln(I_0/I) \} - \sum_{\lambda} \{ \sum_i \{ \Delta \sigma_i \lambda (c_i l_\lambda) \} + P_\lambda \} \right]$$

$$\text{SC}_i = \sum_{\lambda} (c_i l_\lambda)$$

Assume l_λ constant over small spectral window and thereby derive Vertical Column Amount

$$\text{VC} = \text{SC}/\text{AMF}$$

AMF is the Air Mass factor
DOAS made simple (2)!

VC = SC/AMF

The AMF must be derived using a Radiative Transfer Model – RTM.

The RTM describes the path of light through the Atmosphere.

In its simplest form i.e. Ignoring scattering, the AMF is determined by the geometry
First SCIAMACHY Nadir Spectral Fits

date: 20/06/2002
location: 67.6°N, 20°E
SZA: 80.5°
uncalibrated raw data (lv0)
DOAS analysis using GOME settings

Richter et al., 07 / 2002
Optimal Estimation

\[\hat{x} = \hat{S} \left(K^T S_y^{-1} y + S_a^{-1} x_a \right) \]

\[\hat{S} = \left(K^T S_y^{-1} K + S_a^{-1} \right)^{-1} \]

\(\hat{x} \): vector of atmospheric parameters, retrieval covariance \(\hat{S} \)

\(y \): measurement vector, measurement covariance \(S_y \)

\(x_a \): climatological state vector, a-priori covariance matrix \(S_a \)

\(K \): weighting function, from RTM
Coordinate systems

Plane-parallel atmosphere

Solar radiance

Spherical atmosphere

Solar radiance

Earth

Earth
Outgoing radiation at SZA = 89 deg

Pseudo-spherical model Spherical model
GOMETRAN/SCIATRAN RTM

Spherical RTMs (CDI/CDIP)
- SCIAMACHY (limb mode)
- Ground-based DOAS (off-axis)
- Aircraft/Balloon

Pseudo-spherical RTM
- GOME/SCIAMACHY (near-nadir geometry)
- Downwelling flux
- Ground-based DOAS
- Actinic flux (near-zenith geometry)
- Photolysis frequency

Products: Radiance, Weighting functions, Air Mass Factors

GOMETRAN/SCIATRAN
A radiative transfer model for UV/Vis/NIR (240 – 2400 nm)

GOMETRAN/SCIATRAN
Upwelling flux
Downwelling flux
Actinic flux
Photolysis frequency
Solar Spectrum

- The Solar spectrum consists out of a Planck emission Spectrum ($T \approx 5800$ K) and superimposed line-structure.
- The line structure appears in absorption and emission – Fraunhofer Lines
- A section of the solar spectrum with strong Fraunhofer variability can be found in the UV.
Sun-normalized radiance at TOA (SZA = 40 deg)

Ocean

Lambertian surface
Radiative transfer equation:
Conservation of Energy/First Law of Thermodynamics

\[\mathcal{E} = I \, d\sigma \, dv \, d\omega \, dt \implies d\mathcal{E} = dI \, d\sigma \, dv \, d\omega \, dt \]

\[\mathcal{E}_{ext} = \alpha \, ds \, \mathcal{E} \implies \mathcal{E}_{ext} = \alpha \, ds \, I \, d\sigma \, dv \, d\omega \, dt \]

\[\mathcal{E}_{emit} = \alpha \, J \, ds \, d\sigma \, dv \, d\omega \, dt \]

\[d\mathcal{E} = -\mathcal{E}_{ext} + \mathcal{E}_{emit} \]

\[\frac{dI}{ds} = -\alpha (I - J) \]
Radiative transfer equation (source function)

\[\mathcal{E} = I \, d\omega \, d\sigma \cos \tilde{\Theta} \]

(Incoming energy)

\[\mathcal{E}_{\text{ext}} = \alpha \, ds \, \mathcal{E} = \alpha \, dh \, d\sigma \, I \, d\tilde{\omega} \]

(Total energy loss)

\[ds = \frac{dh}{\cos \tilde{\Theta}} \]

\[\mathcal{E}_{\text{scat}} = \omega \, p(\gamma) \, \mathcal{E}_{\text{ext}} \]

(Scattered part of energy)

\[\mathcal{E}_{\text{emitt}} = \frac{\omega}{4\pi} \int p(\gamma) \, I \, d\tilde{\omega} \]

(Energy gain due to scattering from all possible incoming angles)

\[J = \frac{\omega}{4\pi} \int p(\gamma) \, I \, d\tilde{\omega} \]

Elastic scattering source function

Lecture 2: J. P. Burrows
1st ENVISAT DATA Assimilation Summer School
18-29th August 2003 ESA ESRIN Frascati Italy
Elastic & Inelastic (molecular) Scattering Coefficients
Molecular Scattering coefficients

- Rayleigh scattered energy (by scattering in air) is the sum of
 - Cabannes line (unshifted) and
 - Rotational (Raman) lines (shifted).
 - Vibrational Raman in the atmosphere is weak and therefore neglected
- In standard radiative transfer models this shift is not accounted for and the scattering coefficient remains unseparated:

\[\beta_{\text{ray}}(z; \lambda) = N(z) \sigma_{\text{ray}}(\lambda) = N(z) \frac{32\pi^3 (n-1)^2}{3\lambda^4 N^2} \frac{6 + 3\rho}{6 - 7\rho} \]

Rayleigh splits into
- Rotational Raman lines:

\[r(z; \lambda, \lambda') = N(z) \sigma_{\text{rra}}(\lambda, \lambda') = N(z) w(J; T) \frac{256\pi^5 \beta J^2}{27(\lambda + \Delta J \rightarrow J')} \]

- and Cabannes line:

\[\beta_{\text{cab}}(\lambda) = N(z) \frac{128\pi^5 (n-1)^2}{3\lambda^4} \frac{1}{4\pi^2 N^2} \]
Inelastic Scattering in Atmosphere and Ocean

Impact on Trace Gas Retrievals
What is the Ring Effect?

- Solar Fraunhofer lines are different in shape comparing scattered light and direct sun light (Grainger & Ring, 1962).
- Usually the ratios of scattered and sun light spectra reveal an infilling of Fraunhofer lines – Resulting spectral structure is called Ring spectrum or filling-in.

Measurement geometries
Filling-In

- The deformation, or filling-in, of a Fraunhofer line is illustrated for one of the strongest Fraunhofer lines- the Ca II-K line:

 ![Normalized Intensities](image)
 ![...and their relative Difference](image)

- In-filling is a relative quantity!
Why is the Ring effect important?

- To improve our understanding of fundamental processes in planetary (not only terrestrial) atmospheres.
- To remove the impact of the effect on trace gas retrievals (especially in UV-Vis):
 - Errors in slant column UV-Vis-retrievals from DOAS will be significant for weak absorbers and moderate for strong absorbers like Ozone.

NO$_2$ Retrieval without accounting for the effect

...and taking it into account
Characteristics of Ring

- More than forty years of research in this area mainly show similar characteristics.
- Experiences are mainly based on experiments.

<table>
<thead>
<tr>
<th>Increase of</th>
<th>Filling in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar zenith angle</td>
<td>+</td>
</tr>
<tr>
<td>Ground Albedo</td>
<td>+</td>
</tr>
<tr>
<td>Wavelength</td>
<td>-</td>
</tr>
<tr>
<td>Clouds</td>
<td>+/-</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>-</td>
</tr>
</tbody>
</table>

- Strong depolarization of line cores.

Rotational Raman Scattering (RRS) at air molecules (O₂ & N₂) is the process that contributes predominantly to the filling in.

Photon redistribution
Reminder: Raman scattering

- **Stokes-Transitions**: Molecule takes part of scattered photon energy.
- **Anti-Stokes-Transitions**: Molecule adds part of its energy to scattered photon.
Filling-in by RRS

- **RRS redistribution is based on**
 - Loss of photons at wavelength of interest by expanding the amount of light to Stokes & Anti-Stokes transitions.
 - Gain of photons by RRS lines (Stokes and Anti-Stokes) corresponding with the wavelength of interest.

- This approach takes into account single „wavelength scattering“ but multiple spatial scattering w.r.t. (Vountas et. al., 1997)
Validation of the Model

- RRS redistribution within radiative transfer has been incorporated in Sciatran1.2
- Validation of the model with data of GOME.
- Investigation of Fraunhofer lines between 390-400 nm

Direct comparison of opt. Depth

... and after removing a polynomial

- Very good agreement in a wavelength range that is dominated by Ring!
Extension of Ring: Molecular Ring

- In principle there is no difference between Fraunhofer lines and gas absorption lines.
- A separation or parameterization of "molecular Ring" failed because of correlation. This an iterative approach is required.
- Pure Fraunhofer Filling-in is independent of state of the atmosphere.
- Filling-In of absorption lines will certainly depend on it!
- This leads to a significant problem accounting for this issue in TG-retrievals.
DOAS Retrievs

- A clear quantitative statement about the impact of Ring on DOAS retrievals can be done only using model data.
- Tests with O$_3$ and NO$_2$.
- Accounting for Ring:

\[
\begin{align*}
 r_r(\lambda) &= \ln \frac{I+R_{RS}(\lambda)}{I-R_{RS}(\lambda)} \\
 t_0 &
\end{align*}
\]

- Error in VC for both gases lies between 0-10%.
- Wrong Ring spectrum can be worse than using none.
- For Ozone Fraunhofer Filling-in is more important. Absorption line filling-in is more important for NO$_2$.
Water Ring: Historical Background

- Global retrieval of minor trace gases using DOAS in the UV/Vis.: GOME-Data
- Spectral structures could not be attributed and remained as a residual.
- X^2 is an indicator for the fit quality

- Significant correlation of large residuals and low chlorophyll-a concentration (derived from SeaWiFS).
- Spectral structures induced by **water inherent properties??**
Experiment was set up. On-ground measurements in Bremen

- Grating spectrometer:
 - The spectral resolution ~ GOME; spectral range covered 344-388 nm.

Typical "Ring structure" for Zenith measurements, insignificant structure for Nadir
Water Ring: Historical Background III

- Swimming pool residual
- GOME residual

- Overall agreement between swimming pool spectrum and GOME residual.
- Reasons for this structure seem to be water-inherent:
 - Emission, Absorption or
 - Redistribution (inelastic scattering)???
Water Ring: Raman Scattering

- From experience with the *atmospheric* Ring effect we know that Raman scattering can be an efficient photon redistributor.
- In liquid water rotational transitions are suppressed, vibrational not!

- *Vibrational Raman Scattering (VRS) could play a role!*

- At typical oceanic temperatures there are not enough molecules excited
 - Only Stokes-transitions are possible.
Modelling

- Photon’s fate in Earth’s Atmosphere and Ocean requires:

 A coupled Atmosphere-Ocean Radiative Transfer Model

- Atmospheric radiative transfer code SCIATRAN (V1.2) comprises lots of features:
 - Absorption, and elastic & inelastic scattering in a pseudo-spherical atmosphere.
 - Ground-Reflection is included as Lambertian Refl.

- Idea: Coupling of RT in Atmosphere and Ocean via spectral Reflection function

- Sathyendranath & Platt (1998) proposed such a reflection function using an adaption of Gordon’s QSSA-Approach (Gordon, 1973)
Application

- Fitting model results within GOME DOAS-Retrievals leads to promising results:

DOAS fits of clear-sky GOME data (lv1: 90208175).
Ocean Reflectance 1

- Nadir observations from air-or spacecraft are influenced by the reflectance of water.
- The reflectance is a function of the scattering and absorption coefficient of the water body.
- The total absorption coefficient a of any water body can be expressed by:
 $$a = a_{ph} + a_{CDOM} + a_d + a_w$$

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Absorption due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{ph}</td>
<td>phytoplankton (mainly seen by Chlorophyll-a)</td>
</tr>
<tr>
<td>a_d</td>
<td>Detritus (including inorganic suspended matter)</td>
</tr>
<tr>
<td>a_{CDOM}</td>
<td>Chromomorphobic Dissolved Organic Matter (CDOM or Gelbstoff-Yellow Substance)</td>
</tr>
<tr>
<td>a_w</td>
<td>Water itself</td>
</tr>
</tbody>
</table>

- With significantly strong and variable spectral features in the ocean reflectance we will have the possibility to retrieve Chlorophyll-a concentrations.
Ocean Reflectance 2

- Using GOME data we could indirectly produce such a spectral signature („Water Ring“):

 ![GOME: Residual OCIO fit 1 - 22 FEB 1999](image1)

 ![SeaWiFS Chlorophyl 1-28 FEB 1999](image2)

- Significant correlation of large residuals and low chlorophyll-a concentration (derived from SeaWiFS).
- Modulation of the size of residual with chlorophyll-a concentration!
- Retrieval of chlorophyll-a using the residual information. Study is ongoing!
Retrieval Experiments

- Radiative transfer model to simulate radiance spectra
- Instrument model
- Simulated limb measurements
- Optimal estimation retrieval formalism
- Theoretical retrieval precisions for trace gases from diagonal elements of the retrieval covariance matrix
Limb Scattering Theoretical Precisions

- vertical res.: 3 km
- horizontal resolution in azimuth: 240 km (120 km min.)
- horizontal resolution in flight direction: approx. 400 km
- Observation optimised to match limb with nadir measurements
- Duration of Limb sequence: 60 sec.
- Global coverage: 6 days at the equator

The theoretical precision for a given instrument configuration is the limit of accuracy determined by random or stochastic noise.
The limb-scattering geometry

- Limb radiance corresponds to the solar radiation that is Rayleigh and Mie-scattered along the LOS and transmitted into the FOV of the observer.
Modelling the Radiative Transfer

<table>
<thead>
<tr>
<th>Requirements UV-VIS-SWIR RTM Limb</th>
<th>SCIATRAN/CDIPI (A. Rozanov 2001)</th>
<th>SCIARAYs (Kaiser 2001)</th>
</tr>
</thead>
</table>
| Refraction | ☺☺☺☺ | ☺☺☺ophonkating hall, 30th August 2003, BUENOS AIRES, ARGENTINA

Lecture 2: J. P. Burrows

1st ENVISAT DATA Assimilation Summer School

18-29th August 2003 ESA ESRIN Frascati Italy
O$_3$ Weighting Function for Limb

- 360 nm
- 790 nm
- Light path is wavelength dependence => multi spectral advantage
Averaging Kernels Limb

<table>
<thead>
<tr>
<th></th>
<th>300 – 370 nm</th>
<th>15 – 30 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>Useful height range: 5—50 km</td>
<td>Information determined by the measurement</td>
</tr>
<tr>
<td></td>
<td>Above 12 km all information comes from the measurement</td>
<td>some smoothing</td>
</tr>
<tr>
<td>BrO</td>
<td>Useful height range: 15—30 km</td>
<td></td>
</tr>
</tbody>
</table>
Limb: NO$_2$ Precision

![Graph showing the relationship between altitude and relative a posteriori precision.](image)

- **X-axis**: Relative a posteriori precision [%]
- **Y-axis**: Altitude [km]
- **Legend**:
 - Red asterisks: Reality target
 - Blue line: Relative a posteriori precision [%]
Limb: BrO Precision

![Graph showing relative a posteriori precision in percentage against relative a posteriori precision in percentage.](image)
Limb: H_2O Precision

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Limb_H2O_Precision.png}
\caption{Graph showing the relationship between altitude and relative a posteriori precision for H_2O.}
\end{figure}
Summary

• Radiative Transfer in the solar region, UV, Visible and NIR discussed
• Single and Multiple scattering significant
• Particle scattering significant.