Aboveground biomass retrieval in tropical forests – the potential of synergistic X- and L-band SAR data use

S. Englhart, V. Keuck, F. Siegert

Introduction

• Accurate biomass and carbon estimation is the most important requirement for Reducing Emissions from Deforestation and forest Degradation (REDD)
• Tropical forests cover ~15% of the Earth’s surface and contain up to 40% of terrestrial carbon (FAO 2009, Page et al. 2009)
• SAR systems are weather and daylight independent which is very advantageous in the tropics with frequent cloud coverage

Study area

• Study site in Central Kalimantan (298,745 ha), Borneo/Indonesia
• Located in flat, alluvial plains comprising peat swamp forests (intact, heavily degraded or regrowing)
• Peatlands have an enormous carbon storage: aboveground forest biomass and belowground peat deposits

Methods

• SAR data: calibration, co-registration, speckle filtering
• Up-scaling of biomass reference data: airborne LiDAR measurements were in turn calibrated to field inventory data (Kronseder et al. 2010)
• Biomass modeling of TerraSAR-X and PALSAR backscatter
 - mono- and multi-temporal
 - alone and in combination

Results and Discussion

 X- and L-band combined multi-temporal biomass estimation model achieved the best results
  multi-temporal models compensate extreme climatic conditions
  different penetration depths of X- and L-band signal into the vegetation (X-band signal more sensitive to low biomass, L-band signal more sensitive to high biomass) (Fig.4)
 Spatially and temporally transferable (Fig.3)
 Biomass estimation model valid up to 600 t/ha
  accuracy decreases at high biomass values
  up-scaling approach makes regression models powerful, even in high biomass ranges
  average biomass estimation of different forest types very accurate featuring the spatial distribution (Fig.3)

Study objectives

• Potential of combined X- and L-band SAR data use for aboveground biomass retrieval
• Up-scaling of biomass reference data:
 in-situ data ➔ LIDAR estimations ➔ SAR estimations

Table 1: Properties of remote sensing data used for the study in Central Kalimantan, Indonesia

<table>
<thead>
<tr>
<th>Date</th>
<th>Polarization</th>
<th>Incidence Angle</th>
<th>Strip Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/09/2007</td>
<td>HV</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>10/09/2007</td>
<td>HV</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>26/05/2008</td>
<td>HV</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>26/08/2008</td>
<td>HV</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>11/10/2008</td>
<td>HV</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>14/06/2008</td>
<td>VV</td>
<td>8.25</td>
<td>24.3</td>
</tr>
<tr>
<td>08/08/2008</td>
<td>VV</td>
<td>8.25</td>
<td>24.3</td>
</tr>
<tr>
<td>30/08/2008</td>
<td>VV</td>
<td>8.25</td>
<td>24.3</td>
</tr>
</tbody>
</table>

© RSS Remote Sensing Solutions GmbH 2010