AMENDMENT RECORD SHEET

The Amendment Record Sheet below records the history and issue status of this document.

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>DATE</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>05 August 2019</td>
<td>First EDAP version (Report No. 3)</td>
</tr>
<tr>
<td>0.2</td>
<td>18/10/2018</td>
<td>Second version after ESA review.</td>
</tr>
<tr>
<td>1.0</td>
<td>25/10/2019</td>
<td>First Issue</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

1. INTRODUCTION .. 3
 1.1 Reference Documents .. 3

2. EXECUTIVE SUMMARY ... 5
 2.1 EDAP Quality Assessment .. 5
 2.2 OCM-2 Detailed Assessment ... 7

3. EDAP QUALITY ASSESSMENT .. 8
 3.1 Product Details (preliminary assessment) .. 8
 3.2 Product Generation (preliminary assessment) .. 9
 3.3 Ancillary Information (preliminary assessment) ... 10
 3.4 Uncertainty Characterisation (not assessed in this version) 11
 3.5 Validation (preliminary assessment) .. 11

4. DETAILED OCM-2 ASSESSMENT ... 13
 4.1 Product Format Consistency Checks .. 13
 4.2 Product Content Checks .. 13
 4.3 Product Quality Assessment ... 17
 4.3.1 Top of Atmosphere DIMITRI Assessment ... 17
 4.3.2 Level 2 Product Validation ... 17
 4.4 CONCLUSION ... 20
1. INTRODUCTION

This document is the Q2 2019 (May – July 2019) quarterly Quality Assessment (QA) report for the latest Ocean Colour Monitor (OCM) instrument, OCM-2, on-board the Indian satellite, OceanSat-2.

This QA provides a series of product checks, using a sample of OCM-2 products retrieved through ESA’s Online Dissemination service, that relate to product format consistency as well as product content consistency and quality. This QA also provides a derivation of product quality statistics.

1.1 Reference Documents

The following is a list of documents with a direct bearing on the content of this report. Where referenced in the text, these are identified as RD.n, where ‘n’ is the number in the list below:

2. EXECUTIVE SUMMARY

The aim has been to ensure, principally, that the format and content (i.e. radiance and geophysical data) of OCM-2 products (L1B, L2B and L2C), already available to users, are of a suitable quality.

This Quarterly QA report updates the previous reporting (Q1 2019) to include the daily data acquired during May to July 2019; performed in accordance with the QA process and tools (e.g. QA scripts) detailed in [RD.1] and since improved upon within this report.

Going forward, within EDAP, the aim is to expand the quarterly reporting to include an:

- EDAP Quality Assessment: summary in Section 2.1 with detailed analysis in Section 3.
- Improve the absolute and relative geometric assessment: not started.
- Expand the sensor comparison to include Top of Atmosphere data: started and detailed in Section 4.3.1.
- Expand the in-situ comparison to a greater number of Aeronet locations alongside Boussole: detailed in Section 4.3.2.

2.1 EDAP Quality Assessment

A preliminary assessment has been performed using the National Physical Laboratory (NPL) EDAP guidelines [RD.2], with the summary reported in Figure 1 and detailed analysis within Section 3. It is classed as a ‘preliminary assessment’ as it’s the first iteration, and so feedback from ESA and NPL will be sought on the analysis and updates performed in subsequent reports.
Technical Note on Quality Assessment for OceanSat-2 OCM (Quarterly report for Q2 2019)
25 October 2019
Issue 1.0

<table>
<thead>
<tr>
<th>Product Details</th>
<th>Product Generation</th>
<th>Ancillary Information</th>
<th>Uncertainty Characterisation</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Information</td>
<td>Sensor Calibration & Characterisation Pre-Flight</td>
<td>Product Flags</td>
<td>Uncertainty Characterisation Method</td>
<td>Reference Data Representativeness</td>
</tr>
<tr>
<td>Availability & Accessibility</td>
<td>Sensor Calibration & Characterisation Post-Launch</td>
<td>Additional Information</td>
<td>Uncertainty Sources Included</td>
<td>Reference Data Quality</td>
</tr>
<tr>
<td>Product Format</td>
<td>Retrieval Algorithm Method</td>
<td></td>
<td></td>
<td>Validation Method</td>
</tr>
<tr>
<td>User Documentation</td>
<td>Retrieval Algorithm Tuning</td>
<td></td>
<td></td>
<td>Validation Results</td>
</tr>
<tr>
<td>Metrological Traceability</td>
<td>Additional Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 – OCM-2 Quality Evaluation Matrix (preliminary assessment)
2.2 OCM-2 Detailed Assessment

For this QA period, OCM-2 products were assessed from May to July 2019 with older products included within the plots. The Product Format Consistency Check was not repeated as the focus was on improving the Product Content Check.

The results are summarised in Table 1.

<table>
<thead>
<tr>
<th>OCM-2 Product Type</th>
<th>Product Format Consistency Check</th>
<th>Product Content Check</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B</td>
<td>No Issues Detected – detailed analysis in [RD.2], not reassessed for this report</td>
<td>N/A</td>
<td>-</td>
</tr>
<tr>
<td>L2B</td>
<td>No Issues Detected – see above, for scenes being analysed</td>
<td>N/A</td>
<td>-</td>
</tr>
<tr>
<td>L2C</td>
<td>No Issues Detected – see above, for scenes being analysed</td>
<td>Minor Issues Detected – analysed 22 new files for Path 3 Row 11 and 30 new files for Path 4 Row 10 from the May to July 2019 period</td>
<td>As expected, see Sections 4.2 and 4.3</td>
</tr>
</tbody>
</table>
3. EDAP QUALITY ASSESSMENT

3.1 Product Details (preliminary assessment)

<table>
<thead>
<tr>
<th>Product Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
</tr>
<tr>
<td>Sensor Name</td>
</tr>
<tr>
<td>Sensor Type</td>
</tr>
<tr>
<td>Product Version Number</td>
</tr>
<tr>
<td>Product ID</td>
</tr>
<tr>
<td>Processing level of product</td>
</tr>
</tbody>
</table>
| **Measured Quantity Name** | L1: Radiance
L2: CL for Chlorophyll-a concentration; DA for Vertical Diffuse attenuation coefficient (Kd) at 490-nm; SE for Total Suspended Matter concentration; AO for Aerosol Optical Depth |
| **Measured Quantity Units** | L2 nLw: W cm² nm⁻¹ sr⁻¹
L2: CL (mg m⁻³); DA 0.01-0.50 m⁻¹; SE 0.0-200 mg L⁻¹; AO 0.0-1.0 unitless |
| **Stated Measurement Quality** | Not provided |
| **Spatial Resolution** | L1 A & B: 360 by 236 m
L2 C: 360 by 360 m |
| **Spatial Coverage** | ![Spatial Coverage](image) |
| **Temporal Resolution** | Daily |
| **Temporal Coverage** | October 2015 onwards |
| **Mission coverage** | Global |
| **Point of Contact** | ESA Helpdesk |
| **Product locator (DOI/URL)** | ESA: https://tpm-ds.eo.esa.int/oads/access/collection/OceanSat2
Space Applications Centre, India: https://mosdac.gov.in/data/Missions/oceansat/oscat_home.jsp
Global Area Coverage (GAC) available free of charge, while LAC data is charged for. |
Conditions for access and use
- ESA Single Sign-On (SSO) account

Limitations on public access
- Registration with ESA

Product Abstract
- N/A

Product Availability & Accessibility
Compliant with FAIR principles	ESA archive is available for download after registration
Data Management Plan	Not available to users
Availability Status	Near-Real-Time availability within the ESA archive

Product Format
Product File Format	HDF
Metadata Conventions	Metadata file provided (filename.meta within product directory) – list of parameters detail in the product specification documents
Analysis Ready Data?	Yes – L2C

Product User Documentation

<table>
<thead>
<tr>
<th>Document</th>
<th>Reference</th>
<th>QA4ECV Compliant</th>
</tr>
</thead>
</table>
| Product User Guide (PUG) | - OceanSat-2-Level-1-Product-Specifications, Ver. 1.1, Jun 2010
- OceanSat-2-Level-2-Product-Specifications, Ver. 1.4, Apr. 2017
- PDF on IOCCG website: www.ioccg.org/sensors/OCM-2.pdf | N/A |
| Algorithm Theoretical Basis Document (ATBD) | Not publicly available, but peer-reviewed papers are published, see Section 3.2 | N/A |

Metrological Traceability Documentation
| Document Reference | Error budget mentioned from Sriperambudur et al. (2015) http://dx.doi.org/10.4236/ojms.2015.54035 |
| Traceability Chain / Uncertainty Tree Diagram Available | Level 1: not provided
Level 2:
- Normalized water leaving radiance (nLw) < 5% - not provided as a product
- CL <30%; DA < 15%; SE < 20%; AO < 20% |

3.2 Product Generation (preliminary assessment)

Sensor Calibration & Characterisation – Pre-Flight
Sensor Calibration & Characterisation – Post-Launch

Summary

Sensor characterisation includes:
- On-board calibration using Light-Emitting Diodes (LEDs)
- Vicarious calibration using an oceanographic buoy
- Lunar calibration
- Spatial and radiometric Image based characterization system

References
- Pre-launch calibration & Post-launch performance, May 2013
- Post-launch calibration of Ocean Colour Monitor 2 using Kavaratti CAL-VAL site observations, Jan 2013
 https://www.currentscience.ac.in/Volumes/104/01/0023.pdf
- Update of post launch vicarious, lunar calibrations & current status, June 2015
- Cross-calibration of the OceanSat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS, May 2016,
 https://doi.org/10.1117/12.2224046

Retrieval Algorithm Method (Include for Level 2 Products Only)

Summary

ATBD is not made publicly available, processor Sriperambudur et al. (2015) lists SeaDAS (https://seadas.gsfc.nasa.gov/) as the process for HDF files

References
- Sriperambudur et al. (2015)
 http://dx.doi.org/10.4236/ojms.2015.54035

Retrieval Algorithm Tuning (Include for Level 2 Products Only)

<table>
<thead>
<tr>
<th>Summary</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Additional Processing

Additional Processing 1

<table>
<thead>
<tr>
<th>Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Additional Processing 2

<table>
<thead>
<tr>
<th>Description</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Ancillary Information (preliminary assessment)
Product Flags

<table>
<thead>
<tr>
<th>Product Flag Documentation</th>
<th>OceanSat-2-Level-2-Product-Specifications, Ver. 1.4, Apr. 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensiveness of Flags</td>
<td>Section 5.1.8, L2 Flag Data Group – brief description of the L2 product flags</td>
</tr>
</tbody>
</table>

Additional Information

<table>
<thead>
<tr>
<th>Ancillary Data Documentation</th>
<th>None provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensiveness of Data</td>
<td>N/A</td>
</tr>
<tr>
<td>Uncertainty Quantified</td>
<td>N/A</td>
</tr>
</tbody>
</table>

3.4 Uncertainty Characterisation (not assessed in this version)

Uncertainty Characterisation Method

<table>
<thead>
<tr>
<th>Summary</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Uncertainty Sources Included

<table>
<thead>
<tr>
<th>Summary</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Uncertainty Values Provided

<table>
<thead>
<tr>
<th>Summary</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
<tr>
<td>Analysis Ready Data?</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Geolocation Uncertainty

<table>
<thead>
<tr>
<th>Summary</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

3.5 Validation (preliminary assessment)

Validation Activity #1
<table>
<thead>
<tr>
<th>Independently Assessed?</th>
<th>Yes – within this report for the derived L2 Chlorophyll-a product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Data Representativeness</td>
<td>For this report, we have used data from two AERONET-OC stations and BOUSSOLE with further expansion expected in future iterations. Other, referenced, papers have used cruise measurements.</td>
</tr>
<tr>
<td>Reference</td>
<td>Section 4.3.2</td>
</tr>
<tr>
<td>Reference Data Quality & Suitability</td>
<td>The AERONET-OC stations and BOUSSOLE have known origins while the data quality of the reference data used within the cited peer-reviewed papers is less quantifiable; one paper uses fluorometrically derived Chlorophyll while the other is based on High Performance Liquid Chromatography (HPLC).</td>
</tr>
<tr>
<td>Reference</td>
<td>Section 4.3.2</td>
</tr>
<tr>
<td>Validation Method</td>
<td>Follows the marine approach that is defined in [RD.16]</td>
</tr>
<tr>
<td>Reference</td>
<td>Section 4.3.2</td>
</tr>
<tr>
<td>Validation Results</td>
<td>Simple plots at this stage.</td>
</tr>
<tr>
<td>Reference</td>
<td>Section 4.3.2</td>
</tr>
</tbody>
</table>
4. DETAILED OCM-2 ASSESSMENT

This QA is performed using a sample of OCM-2 L1B (local area coverage radiance products), L2B (local area coverage products as four geophysical parameters: Chlorophyll-a concentration (clo), aerosol optical depth (aod), total suspended matter (tsm) and depth attenuation coefficient (dac)) and L2C (local area coverage geo-referenced products as four geophysical parameters) products that have been downloaded for all scenes (i.e. all tracks and frames) applicable to a selection of dates between the 01 January 2017 and 01 August 2019 (dates chosen within this reporting period, based on presence of reduced cloud cover).

4.1 Product Format Consistency Checks

At this stage of the QA process, product format consistency checks are performed on the retrieved OCM-2 products in order to ensure that, as far as possible, the correct input files were used in the relevant processing stage(s) and that the product format conforms to the format defined in the EO-SIP Specialisation for OceanSat-2 Mission document [RD.4].

4.1.1 Product Format Consistency Check Results

For the format consistency check*, a total of 549 OCM-2 products were checked previously (Table 2), and all were shown to have used the correct input files and be of the correct product format; see Table 2. For the previous period [RD.5], additional files have been checked (in this version: 28th July 2018) since the last report to ensure nothing has changed.

Table 2. OCM-2 EO-SIP Consistency Check [RD.2]

<table>
<thead>
<tr>
<th>OCM-2 Product Type</th>
<th>Product SIP Information File</th>
<th>Product Metadata File</th>
<th>Product HDF File**</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B</td>
<td>183/183</td>
<td>183/183</td>
<td>N/A</td>
</tr>
<tr>
<td>L2B</td>
<td>183/183</td>
<td>183/183</td>
<td>N/A</td>
</tr>
<tr>
<td>L2C</td>
<td>183/183</td>
<td>183/183</td>
<td>183/183</td>
</tr>
</tbody>
</table>

*The consistency check does not include checking for the existence of a QL/browse image (.png file).

**The consistency check for each L2C product includes an additional check of the HDF files found, and their validity, within the (further zipped) product folder.

4.2 Product Content Checks

At this stage of the QA process, product content checks are performed. These checks are performed, using both the QLs and GeoTIFFs (to produce daily composites) provided by the OCM-2 L2C products retrieved, in order to visually assess product content (i.e. radiance and geophysical data) in terms of consistency and quality.
4.2.1 Product Content Check Results

A selection of QLs, associated with the OCM-2 L2C products retrieved for this reporting period, are shown in Figure 2; it is important to note that the Chlorophyll-a concentration values provided in these QLs are restricted by a pre-specified range (i.e. $0 \leq \text{chl} \leq 5 \text{mg.m}^{-3}$) and not the true range. Therefore, consistency and quality assessments on Chlorophyll-a concentration values cannot be accurately performed using the QLs alone.

The aforementioned consistency and quality assessments on Chlorophyll-a concentration values are best performed using the Chlorophyll-a concentration composites (which do not enforce a pre-specified range and, usefully, include the use of a Natural Earth [RD.6] vector coastline layer at 50 m resolution) generated for this assessment (shown in Figure 3). Overall, the OCM-2 composites are comparable to the estimations derived from the ocean colour products produced by NASA’s MODIS-Aqua and VIIRS sensors (see Figure 4). The values in the Baltic are high because of the cyanobacteria blooms that occur at this time of year.

Note: In previously analysed imagery, as expected, poor Chlorophyll-a concentration estimations are seen to dominate high latitude regions where radiance retrievals are impacted largely by the high solar zenith angles. Also, those regions that have dense cloud cover, coastlines and turbid coastal waters; as expected when using an ‘open ocean’ band ratio algorithm, e.g. [RD.7].
Figure 2. A sample OCM-2 QLs for the 28th July 2019 Path 3 Row 10.
Figure 3. A snapshot from QGIS showing the daily Chlorophyll-a (mg/m³) composite using data from 28th July 2019.

Figure 4. MODIS-Aqua and Suomi-NPP VIIRS Chlorophyll-a products from the 28th July 2019 (left to right, respectively) over the Baltic Sea (Gustav Dalen location) as the true colour composite and then chlorophyll product.
4.3 **Product Quality Assessment**

4.3.1 **Top of Atmosphere DIMITRI Assessment**

Initial activities have started related to expanding the sensor comparison to include Top of Atmosphere (**TOA**), through the Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison (**DIMITRI**) software [RD.8]. The software has been received from ARGANS and is being updated to a newer version of IDL with OceanSat-2 data to be included.

4.3.2 **Level 2 Product Validation**

A Python script was developed to produce product quality statistics for inclusion in these quarterly OCM-2 QA reports; in this report the time-series has been expanded to include February 2019 onwards with historical data also processed for the newly included Gustav Dalen AERONET location in the Baltic. As described by [RD.9], the AERONET-OC network consists of globally distributed autonomous radiometer systems maintained at fixed offshore sites.

The script extracts a point of interest from a set of supplied L2C OCM-2 products, with the plot showing time-series values that correspond to the mean and standard deviation of the point of interest specified (a kernel that is three by three pixels in size and is centred on the supplied latitude/longitude).

For Figure 5, 180 products were analysed for the period from 3rd January 2017 to 31st July 2019 (30 new products from the start of May to the end of July 2019); the values shown correspond to the location of the AERONET-OC Acqua Alta Oceanographic Tower. The OCM-2 Chlorophyll-a (clo) concentration and Aerosol Optical Depth (aod) for each chosen date (appeared cloud free) have been plotted. In addition, the plot shows AERONET-OC (**in-situ** sensor) estimated Chlorophyll-a values; provided as part of the AERONET-OC dataset.
Figure 5. Time-series plot of the OCM-2 Chlorophyll-a (chl) and Aerosol Optical Depth (aod) products extracted from the Level 2C files, and AERONET-OC estimated Chlorophyll-a for the location of the AERONET-OC Acqua Alta Oceanographic Tower; data courtesy of AERONET website/Giuseppe Zibordi.

Additional plots have now also been produced for Gustav Dalen (Figure 6) and BOUSSOLE (Figure 7). BOUSSOLE uses the same path and row as the Acqua Alta Oceanographic Tower, while Gustav Dalen uses Path 4 Row 10. Ninety-six scenes were initially downloaded from 2017 to 2019, to overlap with available AERONET-OC data, as Gustav Dalen operates during the summer months (May to September); for this report another 22 dates were downloaded for 2019.

https://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_seaprism_new?site=Venise&nachal=0&year=25&aero_water=0&level=1&if_day=0&if_err=0&year_or_month=1
BOUSSOLE is a data buoy rather than AERONET-OC station and so the in-situ data has been acquired differently; currently the surface sampling (fluorometrically and HPLC derived Chlorophyll) is being plotted; surface sampling data only available up until Jan 2018.

2 http://www.obs-vlfr.fr/Boussole/html/boussole_data/other_useful_files.php
There are several sources of uncertainty, e.g. the AERONET-OC bands are not the same are the OCM-2 bands. However, overall, the plots for both the Acqua Alta Oceanographic Tower and Gustav Dalen show that the AERONET-OC estimated Chlorophyll-a concentrations are significantly higher than the OCM-2 estimates, which could mean that the OCM-2 output is underrepresenting the natural phytoplankton variability.

4.4 CONCLUSION

The conclusions from this Quality Assessment for OceanSat-2 OCM report (Quarterly report for Q2 2019) are:

- **No specific issues have been detected for the L1B or L2B products**: at this stage they have been checked in terms of product format consistency rather than scientific data quality; although it is acknowledged the L1 quality will have an impact on the L2 analysis and so needs to be analysed going forward.

- **L2C: No Issues have been detected with the product format consistency with minor issues detected for the product content**:
 - From the Q1 report [RD.10], poor Chlorophyll-a concentration estimations are seen to dominate high latitude regions where radiance retrievals are impacted largely by high solar zenith angles not correctly accounted for within the atmospheric correction; acknowledged as an issue within version 1.4 of the L2 Product Spec [RD.11].
 - Inaccurately estimated OCM-2 Chlorophyll-a concentrations also dominate in those regions with dense cloud cover, coastlines and turbid coastal waters – a combination of cloud pixels not masked, or pixels affected by nearby clouds alongside a simplistic (band ratio) algorithm that doesn’t account for changes in the water reflectance due to components other than Chlorophyll-a. Overestimating chlorophyll-a in complex Case 2 waters was noted by Preethi Latha et al. (2014) [RD.12] where OCM-2 L2 LAC data was processed using SeaDAS and chlorophyll algorithms like OC2 and OC4-V4 O’Rielly et al. (1998) [RD.13].
 - The Product Quality Assessment analysed 202 products across 3 sites. There are several sources of uncertainty but, overall, the OCM-2 Chlorophyll-a concentration product appears to be underrepresenting the natural phytoplankton variability. It is difficult to assess the cause as the L2 Bottom of Atmosphere (BOA) radiance/reflectance product is not provided as part of the L2C product, but by increasing this analysis to a greater number of locations in future reports we’ll be able to provide statistical comparison details. Lower chlorophyll estimates, than expected in open ocean waters, were reported by Shanthi et al. (2013) [RD.14] where cloud free L2 processed OCM data covering the southwest Bay of Bengal demonstrated underestimates for high (in-situ) chlorophyll concentrations and overestimates the low (in-situ) chlorophyll concentrations.

These findings potentially limit the applicability of the Oceansat-2 data in terms of it being classed as a ‘Climate Quality’ dataset. However, the derived biogeochemical products are comparable to a number of other ocean colour missions and so are of value to more operational applications.

Going forward, within EDAP, the aim is to continue to expand the quarterly reporting to include a more in-depth analysis of the product quality:

- Improve the assessment of the absolute and relative geometric accuracy: on hold until the DIMITRI code is running.
• Expand the sensor comparison to include TOA data: DIMITRI is now available and is being updated to handle OceanSat-2 – current focus, planning to show results in the October 2019 report.
• Expand the in-situ comparison to a greater number of AERONET locations. Boussole and Gustav Dalen were added as new sites in the last report; once the DIMITRI analysis is complete this will be considered again.

An increased number of in-situ validation points will allow us to reach the Committee for Earth Observation Satellites (CEOS) Land Product Validation Sub-group Stage 1 Validation, where product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in-situ or other suitable reference data [RD.15]. The validation approach will continue to follow the marine approach that defined in [RD.16].