Validation and impact assessment of ADM-Aeolus observations in the DWD global modelling system

Martin Weissmann
Hans-Ertel-Centre for Weather Research, LMU Munich

Alexander Cress, Roland Potthast
Deutscher Wetterdienst (DWD), Offenbach

Part of the proposal “Experimental Validation of ADM-Aeolus with the ALADIN Airborne Demonstrator (EVA4D)” by Reitebuch et al.
Proposed work for ADM-Aeolus Cal/Val:

- Estimation of representativity errors for validation with ground- and airborne observations from differences of high- and low-resolution regional COSMO simulations over Germany
- Assimilation of ADM-Aeolus observations in the experimental hybrid 3D-Var/LEKF global data assimilation system of DWD, sensitivity studies and assessment of systematic errors in collaboration with observational Cal/Val activities
- Impact assessment using data denial experiments and ensemble-based estimates of observation impact (EnFSO)

Relevant previous studies

- Assimilation of airborne wind lidar observations
- Ensemble-based estimates of observations impact
- Height assignment of cloud winds
Impact of A-TReC 2003 observations in ECMWF IFS (1)

Eight flights of DLR Falcon with scanning coherent 2-µm Doppler Wind Lidar (DWL) in 15 days

Example of observations, horiz. resolution ~10 km (shown: best example; average coverage ~30%)

Reduction of ECWMF forecast error for 500 hPa geopotential height with DWL
Impact of A-TReC 2003 observations in ECMWF IFS (2)

Reduction of mean forecast error over Europe in 15-day period

DWL has a larger observational error than radiosondes, but “volume” averages are more representative for the wind in the model grid box:

→ lower assigned error in DA
→ larger analysis influence
→ larger forecast improvement

Impact of T-PARC 2008 observations in ECMWF IFS and NRL NOGAPS

<table>
<thead>
<tr>
<th></th>
<th>NRL</th>
<th>EC IFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>assimilation</td>
<td>4D-Var</td>
<td>4D-Var</td>
</tr>
<tr>
<td>resolution</td>
<td>55 km</td>
<td>25 km</td>
</tr>
<tr>
<td>DWL processing</td>
<td>super-obs</td>
<td>thinning to</td>
</tr>
<tr>
<td></td>
<td>1.5° lat/lon</td>
<td>~63 km</td>
</tr>
<tr>
<td>DWL obs.</td>
<td>4368</td>
<td>9578</td>
</tr>
<tr>
<td>assigned error</td>
<td>1.8 m/s</td>
<td>1.5 m/s</td>
</tr>
<tr>
<td>an-increment</td>
<td>1.3 m/s</td>
<td>1.8 m/s</td>
</tr>
<tr>
<td>all obs. per day</td>
<td>3 million</td>
<td>18 million</td>
</tr>
</tbody>
</table>

T-PARC airborne DWL observations:
- Eight flights of DLR Falcon in 10 days
- Scanning coherent 2-µm DWL
- Observations near Typhoon Sinlaku

Larger weight at ECWMF
--> larger increment at location of DWL

Fewer observations in NRL analysis
--> larger analysis difference
Wind lidar impact on typhoon track prediction

ECMWF:
9% reduction of 12-120 h forecast error with DWL on one aircraft
8% with dropsondes from four aircraft

NOGAPS:
Neutral impact on typhoon track forecast
Synthetic bogus seems to limit impact of other observations
Experiment without bogus shows larger DWL impact, but very weak cyclone
Adjoint forecast sensitivity to observations (per observation)

b) Mean relative contribution per observation

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3</td>
<td>0.00000</td>
</tr>
<tr>
<td>MTSAT-Rad</td>
<td>-0.00005</td>
</tr>
<tr>
<td>AMSU-B</td>
<td>0.00000</td>
</tr>
<tr>
<td>MHS</td>
<td>0.00005</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>0.00010</td>
</tr>
<tr>
<td>SSM/I</td>
<td>0.00015</td>
</tr>
<tr>
<td>GPS-RO</td>
<td>0.00020</td>
</tr>
<tr>
<td>IASI</td>
<td></td>
</tr>
<tr>
<td>AIRS</td>
<td></td>
</tr>
<tr>
<td>AMSU-A</td>
<td></td>
</tr>
<tr>
<td>HIRS</td>
<td></td>
</tr>
<tr>
<td>SCAT</td>
<td></td>
</tr>
<tr>
<td>AMV GEO</td>
<td></td>
</tr>
<tr>
<td>TEMP/PILOT</td>
<td></td>
</tr>
<tr>
<td>DRIBU</td>
<td></td>
</tr>
<tr>
<td>DWL</td>
<td></td>
</tr>
<tr>
<td>AIRCRAFT</td>
<td></td>
</tr>
<tr>
<td>SYNOP</td>
<td></td>
</tr>
</tbody>
</table>

d) Rel. contr. per obs., area 20-50 N, 120-160 W

ECMWF:
- DWL impact similar to aircraft observations
- DWL impact lower than radiosondes (but more observations)

NRL NOGAPS:
- DWL has largest impact after retrieved TPW, synthetic bogus and scatterometer

Ensemble-based estimates of observation impact (1)

METHOD

\[J(d') = \frac{1}{2} \left(|e_f^d|^2 - |e_f^{d-d'}|^2 \right) \]

\[J'(d') \approx \frac{1}{2} \frac{1}{N-1} \sum_j (e_f^d + e_f^d)_j (Y_f^d)_j (Y_b^d W^d(j))^{\top} R(j)^{-1} d' \]

The method estimates the contribution of different observations to the reduction of forecast error (analogous to adjoint forecast sensitivity to observations)

No need for parallel (data denial) numerical experiments
Ensemble-based estimates of observation impact (2)

Ensemble information can be used to approximate the impact of various observations similarly to adjoint FSO

Reasonable agreement with data denial experiments

This is a powerful tool, but the calculation and interpretation requires caution (similarly to adjoint FSO)

Ongoing work on objective quality indicator for the reliability of estimates and verification with observations

Lidar-based height correction for Atmospheric Motion Vectors (AMVs)

• Correct AMV height with CALIPSO cloud top observations, treat AMVs as layer wind
• Lowest error when a AMVs are assigned to 120-hPa layer beneath CALIPSO cloud top observation
• AMV wind error 18% lower than with original discrete height
• AMVs represent a layer wind beneath the cloud top
• Is this because cloud structures propagate with the layer wind (not relevant for ADM-Aeolus observations)?
• Or is it because cloud motion at the cloud top doesn't represent the environmental wind at this layer, e.g. because vertical mixing in the cloud (relevant for ADM-Aeolus observations)?

Conclusions

- The assimilation of airborne DWL observations demonstrated a high impact and underlines the expectations for ADM-Aeolus
- Airborne DWL observations differ from ADM-Aeolus, but the studies underline the need for wind observations and the benefit of representative volume observations
- The period of the experiments is comparably short, but overall similar results for different campaigns, different models and different settings raise confidence in the results
- Ensemble information can be used to estimate the impact of observations similarly to the adjoint Forecast Sensitivity of Observations (FSO)
- Recent studies show that AMV winds represent winds in a layer wind beneath cloud top rather than winds at the cloud top level. Is this also true for ADM-Aeolus cloud returns or specific for AMVs that observe the shift of cloud structures instead of wind itself?