Stratéole 2:
Long-duration balloons providing wind information in the deep tropics

A. Hertzog, R. Plougonven, A. Podglajen (LMD)
Ph. Cocquerez, S. Venel (CNES)

http://www.tinyurl.com/strateole
Stratéole 2 concept

- Heritage from previous CNES projects that used long-duration (> 1 month) stratospheric balloons

Vorcore (2005) – 27 flights
150 000 obs.
Stratéole 2 concept

• Heritage from previous CNES projects that used long-duration (> 1 month) stratospheric balloons

Amma (2006): 8 flights
Stratéole 2 concept

• Heritage from previous CNES projects that used long-duration (> 1 month) stratospheric balloons

Vorcore (2005) – 27 flights
150 000 obs.

Concordiasi (2010) – 19 flights
3 200 000 obs.

Amma (2006): 8 flights
Stratéole 2 concept

• Heritage from previous CNES projects that used long-duration (> 1 month) stratospheric balloons

• Stratéole 2 will use the long-duration balloons
 • To address dynamics, transport, microphysics, and dehydration processes as well as their interactions in the deep tropics
 • To contribute to operational meteorology and satellite cal/val

• Stratéole 2 is an international project leaded by CNES and LMD involving several research groups in France, USA, Italy

Launched on Feb 8, 2010
Pre-Concordiasi flight (2010)

End on May 11, 2010
Transport in the Tropical Tropopause Layer (TTL)

- Located between 14 km and ~ 20 km
 - Rapid convective transport below
 - Slower vertical motion in the TTL as air continues to ascend to the tropical stratosphere
- Transition from troposphere to stratosphere, gateway for the overworld
- Stratospheric water vapor mixing ratio is set in the TTL, and present decadal variations that modulate stratospheric chem., and surface warming
Transport in the Tropical Tropopause Layer (TTL)

- Analyses are widely used to study transport in the TTL...
 - ... but (upper-air, above convection) wind observations are very scarce in the tropics
 - And tropical winds are not as simply tied to the mass field as in the extra-tropics
Transport in the Tropical Tropopause Layer (TTL)

Void areas over the Oceans and Africa =>
NWP winds poorly constrained by the current observation system in the tropics.
Dynamics of the equatorial stratosphere

- QBO is driven by a continuum of waves (gravity waves → planetary-scale waves) that are mainly generated by deep convection in the tropics (Dunkerton 1997; Ern 2008; Kawatani et al., 2010)
 - Lack of global observations of gravity-wave momentum fluxes in the tropics
 - Climate/operational models have still difficulties in generating a realistic QBO (GWD parameterization, explicit/numerical dissipation, resolution)
Example of balloon observations

Measurements of meteorological variables every 30s

Concordiasi balloon #6: winds

Concordiasi balloon #6: temperature

U, V

Day in 2010

Day in 2010

(K)
Example of balloon observations

Long-duration balloons can resolve the whole spectrum of atmospheric waves

- Planetary waves
- Gravity waves
- Polar flight
- Equatorial flight

Kinetic energy spectrum

Inertial frequency

BV frequency
Operational meteorology

Zonal velocities

Pre-Concordiasi flight #1
(Podglajen et al., 2014)
Operational meteorology

Month-long period with differences up to 15 m/s in both NWP products

Pre-Concordiasi flight #1
(Podglajen et al., 2014)
Operational meteorology

Month-long period with differences up to 15 m/s in both NWP products
Geographical distribution of model errors

Errors twice as large over regions void of conventional observations.
Operational meteorology

- Strateole 2 meteorological observations will be
 - Disseminated on the GTS (through satellite Iridium phone system) in near real time during the balloon campaigns (BUFR encoding by Meteo-France)
 - Used to assess the impact of wind assimilation to improve analysis quality in the tropics (Meteo-France, ECMWF)
 - Used to contribute to ADM-Aeolus cal/val activities in the tropics
Strateole-2 planning and schedule

- 3 balloon campaigns
 - During boreal winter (DJF) to address convective processes and most intense dehydration
 - Balloons will be launched from Seychelles Islands (5°S)
 - Technological campaign: late 2018 (5 flights)
 - 1st scientific campaign: late 2020 (20 flights)
 - 2nd scientific campaign: late 2023 (20 flights)

- Basic in-situ meteorological observations
 - GPS, P, T, hor. wind velocities (balloon displacements)
 - Accuracy: 1.5 m, 0.1 hPa, 0.2 K, 0.1 m/s
 - Measurements every 30 s
Each scientific campaign: 20 flights on 2 different levels

10 flights
Lowermost stratosphere
Remote sensing

STRAT1
(4 flights)
• GPS, P & T
• Backscatter Lidar
• GPS RO
• Radiometers

TTL1
(4 flights)
• GPS, P & T
• Water vapor
• Ozone
• Aerosol counter

TTL2
(3 flights)
• GPS, P & T
• CO2 & CH4
• High-frequency temperature profiles down to 2 km below the balloon

TTL3
(3 flights)
• GPS, P & T
• Aerosol counter
• Nighttime cloud/water vapor/temperature profiles down to 2 km below the balloon

10 flights
Tropical tropopause
In-situ sensors

Upper Level: Air density 125g/m³
Altitude ~ 18 000 m

Lower Level: Air density 95g/m³
Altitude ~ 20 000 m
Conclusions

- Strateole 2 will provide in-situ observations of winds in the TTL and will contribute to assess ADM-Aeolus observations in this very important region
 - Late 2018 and late 2020 campaigns
- Possibility to increase ADM-Aeolus vertical resolution in the deep tropics UTLS during Strateole 2 flights?
 - e.g. 1-km resolution in 17-20 km altitude range
Pre-Concordiasi (2010)

- Long-duration balloons
 - Fly on constant density surfaces at ~ 60 hPa (19-20 km)
 - 3 flights, 3-month long
 - GPS, P, T, hor. wind velocities (balloon displacements)
 - Accuracy: 1.5 m, 0.1 hPa, 0.2 K, 0.1 m/s
 - Measurements every 30 s
- Observations were not assimilated by NWPs
- Comparisons w/ ECMWF operational analyses and MERRA reanalyses

Flight duration: 92 days

Launched on Feb 8, 2010

End on May 11, 2010
Dynamical context

Hovmöller diagram of ECMWF winds @ 57 hPa during the campaign: QBO shift, Kelvin and Rossby-gravity (Yanai) waves
Part of this difference is associated with unresolved small-/meso-scale motions...
Yet the standard deviation numbers are larger than above Antarctica!
Difference statistics

Zonal wind

- $U_{\text{mer}} - U_{\text{obs}}, \langle \Delta U \rangle = -0.2 \text{ m/s}, \sigma = 5.9 \text{ m/s}$
- $U_{\text{cc}} - U_{\text{obs}}, \langle \Delta U \rangle = -2.4 \text{ m/s}, \sigma = 4.8 \text{ m/s}$

Meridional wind

- $V_{\text{mer}} - V_{\text{obs}}, \langle \Delta V \rangle = -0.3 \text{ m/s}, \sigma = 4.4 \text{ m/s}$
- $V_{\text{cc}} - V_{\text{obs}}, \langle \Delta V \rangle = 0 \text{ m/s}, \sigma = 3.6 \text{ m/s}$

Frequency of occurrence

m/s

ECMWF MERRA

m/s

ECMWF MERRA
Difference statistics

Zonal wind

- $U_{\text{mer}} - U_{\text{obs}}$; $\langle \Delta U \rangle = -0.2 \text{ m/s}$, $\sigma = 5.9 \text{ m/s}$
- $U_{cc} - U_{\text{obs}}$; $\langle \Delta U \rangle = -2.4 \text{ m/s}$, $\sigma = 4.8 \text{ m/s}$

Meridional wind

- $V_{\text{mer}} - V_{\text{obs}}$; $\langle \Delta V \rangle = -0.3 \text{ m/s}$, $\sigma = 4.4 \text{ m/s}$
- $V_{cc} - V_{\text{obs}}$; $\langle \Delta V \rangle = 0 \text{ m/s}$, $\sigma = 3.6 \text{ m/s}$
Constraints on ECMWF analyses

5S-5N wind increments in ECMWF operational analyses

Significant increments over South America and Indonesia...
Model dynamics is almost free-running over the rest of the equatorial belt
The 2010 balloon experiment in the equatorial stratosphere and validation of the dynamics in ECMWF operational analyses

A. Hertzog, R. Plougonven, A. Podglajen (LMD/CNRS)
Ph. Cocquerez, S. Venel (CNES)
A. Dabas (CNRM/Météo-France)
N. Žagar (U. Ljubljana)

albert.hertzog@lmd.polytechnique.fr

RESEARCH ARTICLE

Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere

Key Points: Aurélien Podglajen¹, Albert Hertzog¹, Riwal Plougonven¹, and Nedjeljka Žagar²
Strateole 2: A long-duration balloon campaign at the Equator (2017-2019)

http://tinyurl.com/strateole

- 3 campaigns from late 2017 to late 2019
 - Up to 22-24 flights per campaign
 - Flights in the upper TTL (around 18 km) and in the lower stratosphere (around 20 km)
 - Launch from an equatorial site
 => balloons will stay in the ‘tropical pipe’ and provide observations representative of the whole equatorial belt

- Observations available in near-real time
 - Flight level meteorology (P, T, winds)
 - Up to 600 dropsondes/campaign (met profile)
 - Backscatter lidar on some flights
 - In-situ water vapor, ozone, aerosol

- Happy to contribute to ADM/Aeolus related activities!