Landsat 8, Level 1 Product Performance Cyclic Report – November 2016

Author(s) : Sébastien Saunier (IDEAS+, Telespazio VEGA)
 Amy Northrop (IDEAS+, Telespazio VEGA)
AMENDMENT RECORD SHEET

The Amendment Record Sheet below records the history and issue status of this document.

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>DATE</th>
<th>REASON</th>
</tr>
</thead>
</table>
| JULY 2016 | 02 Sep 2016| July 2016 quality report
Major update regarding quality assessment procedures and methods.
Change of the operational team in charge of producing this quality report. |
| AUGUST 2016 | 02 Sep 2016| August 2016 quality report |
| SEPTEMBER 2016| 03 Oct 2016| September 2016 quality report |
| OCTOBER 2016 | 03 NOV 2016| October 2016 quality report |
| NOVEMBER 2016 | 02 DEC 2016| November 2016 quality report |
| NOVEMBER 2016 | 09 Jan 2017| Update of November 2016 quality report with L1T products |
TABLE OF CONTENTS

AMENDMENT RECORD SHEET..2

1. INTRODUCTION...4
 1.1 Scope ..4
 1.2 Report Structure ...4
 1.3 Reference Documents ...5
 1.4 Glossary ..5

2. EXECUTIVE SUMMARY ...6

3. ON GOING QC ISSUES ...7

4. RADIOMETRIC ACCURACY STABILITY MONITORING..8
 4.1 Objectives ...8
 4.2 Methods ...8
 4.3 Results and Discussions ..9

5. GEOMETRIC ACCURACY STABILITY ..13
 5.1 Objectives ...13
 5.2 Methods ...13
 5.3 Results and Discussions ..13
 5.3.1 General Comments ..17

6. INTERBAND REGISTRATION ACCURACY ..19
 6.1 Objectives ...19
 6.2 Methods ...19
 6.3 Results and Discussions ..19
 6.3.1 OLI Multi spectral ..19
 6.3.2 TIRS Band Twin ...21
 6.3.3 OLI / TIRS ...22
 6.3.4 OLI Panchromatic / Multi Spectral Bands ...22

7. TEST SITE DESCRIPTION ..24
 7.1 Geometric Test Sites ...24
 7.2 Radiometric Test Sites ...25

APPENDIX A GEOMETRIC SITE PRODUCT LIST ...27
 7.2.1 France / La Crau (196 / 30) ...27
 7.2.2 Spain / Balears (196 / 32) ..27
 7.2.3 Spain / Ibiza (198 / 33) ..27
 7.2.4 Spain / Grenada (200 / 34) ...28
1. INTRODUCTION

On May 30, 2013, data from the Landsat 8 satellite (launched as the Landsat Data Continuity Mission (LDCM) on February 11, 2013) became available. The European Space Agency (ESA) distributes Landsat 8 Level 1C products as a Near Real Time (NRT) service. Products are processed at the ESA facility with the same processing baseline as the United State Geological Survey (USGS).

Please refer to https://landsat8portal.eo.esa.int/portal or https://earth.esa.int/web/sppa/mission-performance/esa-3rd-party-missions/landsat-8 for more information about the service.

1.1 Scope

The scope of this document is to report the results on the monitoring of the Landsat 8 Level 1 product performance. The report includes comparison with USGS processed products in order to ensure full agreement between both product sources for the community. It is also foreseen to include data comparisons from other similar missions, such as Sentinel-2, in the future.

The main quality items addressed relate to radiometric calibration, geometric calibration and image quality. Hence, every month, the operational team select products acquired over specific validation test sites and perform accuracy analysis.

Note that, an insight on methods is given in RD-1 and the test data set used for this analysis is detailed in RD-2 and is regularly updated.

For any questions regarding the methods and results not covered in this report, please contact the Instrument Data Evaluation and Analysis Service (IDEAS+) through EOHelp: eohelp@esa.int

1.2 Report Structure

This report is organized as follows:

1 INTRODUCTION

2 EXECUTIVE SUMMARY

3 ON GOING QC ISSUES

4 RADIOMETRIC ACCURACY STABILITY MONITORING

5 GEOMETRIC ACCURACY STABILITY
6 INTERBAND REGISTRATION ACCURACY

Interband registration results with methodologies based on specific interband sites are presented. Inter registration accuracy and intra (OLI/TIRS images) registration accuracy are analysed and results are given.

7 TEST SITE DESCRIPTION

The list of test sites, reference equipment and details on input data are reported in this section.

1.3 Reference Documents

The following is a list of reference documents applicable to this report. Where referenced in the text, these are identified as [RD.n], where ‘n’ is the number in the list below:

- RD-1. IDEAS+-TN-02-L8_DataValidation.docx, Landsat 8 Data Validation, 08 April 2015, Issue 1.
- RD-2. TDS_L8_cyclic.xlsx, Landsat 8 Validation Data Details

1.4 Glossary

The following acronyms and abbreviations have been used in this Report.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B</td>
<td>Band-to-Band</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>IDEAS+</td>
<td>Instrument Data Evaluation and Analysis Service</td>
</tr>
<tr>
<td>LDCM</td>
<td>Landsat Data Continuity Mission</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infra-Red</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>OLI</td>
<td>Operational Land Imager</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>SWIR</td>
<td>Short Wave Infra-Red</td>
</tr>
<tr>
<td>TIRS</td>
<td>Thermal Infra-Red Sensor</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of Atmosphere</td>
</tr>
<tr>
<td>USGS</td>
<td>United State Geological Survey</td>
</tr>
</tbody>
</table>
2. EXECUTIVE SUMMARY

The purpose of the Landsat 8 data validation is to assess the continuity of data accuracy of the Landsat Project. The following table summarises the items validated each month and the expected results.

<table>
<thead>
<tr>
<th>Validation Item</th>
<th>Tests Performed / Results Expected</th>
</tr>
</thead>
</table>
| **Radiometric Accuracy:** Calibration Stability Monitoring | 1) Temporal stability is correct (Top of Atmosphere (TOA) reflectance standard deviation is less than 0.7 for blue, green, red and Near Infra-Red (NIR) bands and less than 1.6 for Short Wave Infra-Red (SWIR) 1 and SWIR2 bands).
2) The radiometric calibration of the ESA products and the USGS products are fully in agreement.
Note: A small degradation is observed in the early life of the sensor with no major impact for current products. |
| **Geolocation Accuracy:** Multi temporal Registration Stability | 1) Relative location results show a correct matching between Landsat 8 products (Root Mean Square (RMS), values are less than 5m in both directions).
2) The radial error is within 2.29m.
3) The multi temporal stability is correct (standard deviation errors are less than 5m in both directions)
4) Accuracy remains stable (dependant on the season and the test site). |
| **Interband Registration** | 1) A strong influence of the site and atmospheric condition is observed especially for Operational Land Imager (OLI) SWIR bands. The mean RMSE easting and northing directions remain below 0.2m |
3. **ON GOING QC ISSUES**

TIRS image quality issues have been detected on one product observed this month. Vertical strips as residual of relative calibration are shown in both the TIRS band 10 image and the TIRS band 11 image. Investigations are on-going.

Some data available from the ESA service has been processed to L1Gt processing level, meaning that registration to a common reference map is not performed. Nominally, the L1Gt processing is an option which is applied when the ground control points set is not appropriate for geometric model refinement (number of points, spatial distribution). It is mainly due to the cloud cover content of the scene. Recently it has been observed that some scenes were unexpectedly processed as L1Gt.

It is therefore recommended, when selecting a Level 1 scene in the portal, to check the processing level metadata, as shown in Figure 1 below.

![Screenshot of ESA Landsat 8 Web Portal, highlighting processing level under Product Type information](image)

Figure 1 Screenshot of ESA Landsat 8 Web Portal, highlighting processing level under Product Type information
4. **RADIOMETRIC ACCURACY STABILITY MONITORING**

4.1 **Objectives**

The objective is to assess the radiometric stability of Landsat 8 data and to detect any anomalies between data processed by ESA and USGS.

4.2 **Methods**

The method consists in monitoring the TOA reflectance acquired on a bright site referred to as “Libya4”, known as spatially uniform (as seen with L8/OLI spatial resolution) and spectrally stable in time\(^1\).

For input images, a Region Of Interest (ROI) corresponding to an area of one square degree centred on the geographical coordinates of the site, is extracted. TOA measurement retrieved and then temporal statistics computed. The Libyan site “Libya4” centre is 28.55N / 23.39E, the mean altitude of the site, over the WGS84 ellipsoid is 118m.

For completeness, data in a second window called the “half degree” window is also retrieved and used for comparison.

It is expected that the temporal evolution of TOA measurements over the mission’s lifetime is stable. The results are also computed in radiance units but are not reported in this document.

Landsat 8 OLI and Thermal Infra-Red Sensor (TIRS) images consist respectively of nine and two spectral bands. The OLI spatial resolution is 30 metres for multi spectral bands, and 15 metres for panchromatic bands. As an additional feature compared to previous Landsat missions, there is a new band 1 (ultra-blue) which is useful for coastal and aerosol studies and a new band 9 which is useful for cirrus cloud detection. Regarding TIRS, there are two thermal bands 10 and 11, sampling earth surface at 100 metre intervals. TIRS data are useful for providing more accurate surface temperatures. Note that the pixel spacing of Level 1C products is 30 meters, oversampling is applied. This validation considers multi spectral bands, as indicated in bold in the table below.

<table>
<thead>
<tr>
<th>Band Id</th>
<th>Band Label</th>
<th>Central Wavelength</th>
<th>Bandwidth (µm)</th>
<th>Spatial resolution (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coastal Aerosol</td>
<td>0.4426</td>
<td>0.43 - 0.45</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Blue</td>
<td>0.4837</td>
<td>0.45 - 0.51</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>0.5616</td>
<td>0.53 - 0.59</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Red</td>
<td>0.6545</td>
<td>0.64 – 0.67</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Near Infrared (NIR)</td>
<td>0.8641</td>
<td>0.85 – 0.88</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^1\) CEOS / Q4EO - USGS Test site catalog: http://calval.cr.usgs.gov/sites_catalog_template.php?site=lib4
<table>
<thead>
<tr>
<th>Band Id</th>
<th>Band Label</th>
<th>Central Wavelength</th>
<th>Bandwidth (µm)</th>
<th>Spatial resolution (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Shortwave Infrared 1 (SWIR 1)</td>
<td>1.6097</td>
<td>1.57 – 1.65</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Shortwave Infrared 2 (SWIR 2)</td>
<td>2.2036</td>
<td>2.11 – 2.29</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Panchromatic</td>
<td>0.5987</td>
<td>0.50 – 0.68</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Cirrus</td>
<td>1.373</td>
<td>1.36 – 1.38</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>TIRS 1</td>
<td>-</td>
<td>10.60 – 11.19</td>
<td>100 * (30)</td>
</tr>
<tr>
<td>11</td>
<td>TIRS 2</td>
<td>-</td>
<td>11.50 – 12.51</td>
<td>100 * (30)</td>
</tr>
</tbody>
</table>

The relative spectral response curves of spectral bands considered in this analysis are shown in Figure 2 below.

![Figure 2 Relative Spectral Response](image)

4.3 Results and Discussions

The statistics listed in both tables below are computed based on a dataset of 54 L1T products (from 02/05/2013 to 02/11/2016).

The processing software version is not the same in all cases, since the archive has not been reprocessed. L1Gt products are not taken into account in these statistics. TOA reflectance values are averaged over square zones. Two regions, both centred on site coordinates, are considered. Despite different geographical coverage (50 km x 50 km) against (100 km x 100 km), statistical results agree together.
This cloud free image data stack is used to compute the temporal uncertainty of OLI bands defined as a coefficient of variation (standard deviation divided by mean).

The temporal uncertainty is within 1.5 % for all Visible and NIR bands. Greater uncertainty affects SWIR bands, up to 2.5 %, which is mainly due to atmospheric effects.

Mishra proposes a comparison of ETM+ TOA measurements sensed over pseudo invariant test sites, Libya 4 site included\(^2\). The results obtained herein are in the same order, even better concerning the SWIR bands.

<table>
<thead>
<tr>
<th>Band Label</th>
<th>Mean Reflectance TOA</th>
<th>Std Reflectance TOA</th>
<th>Temporal Uncertainty (100 * Std / Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Aerosol</td>
<td>0.217</td>
<td>0.002</td>
<td>1.080</td>
</tr>
<tr>
<td>Blue</td>
<td>0.241</td>
<td>0.002</td>
<td>0.959</td>
</tr>
<tr>
<td>Green</td>
<td>0.331</td>
<td>0.003</td>
<td>1.005</td>
</tr>
<tr>
<td>Red</td>
<td>0.450</td>
<td>0.005</td>
<td>1.152</td>
</tr>
<tr>
<td>Near Infrared (NIR)</td>
<td>0.575</td>
<td>0.007</td>
<td>1.235</td>
</tr>
<tr>
<td>Shortwave Infrared 1 (SWIR 1)</td>
<td>0.660</td>
<td>0.013</td>
<td>1.898</td>
</tr>
<tr>
<td>Shortwave Infrared 2 (SWIR 2)</td>
<td>0.602</td>
<td>0.0015</td>
<td>2.456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band Label</th>
<th>Mean Reflectance TOA</th>
<th>Std Reflectance TOA</th>
<th>Temporal Uncertainty (100 * Std / Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Aerosol</td>
<td>0.218</td>
<td>0.002</td>
<td>1.019</td>
</tr>
<tr>
<td>Blue</td>
<td>0.242</td>
<td>0.002</td>
<td>0.908</td>
</tr>
<tr>
<td>Green</td>
<td>0.330</td>
<td>0.003</td>
<td>0.991</td>
</tr>
<tr>
<td>Red</td>
<td>0.447</td>
<td>0.005</td>
<td>1.152</td>
</tr>
<tr>
<td>Near Infrared (NIR)</td>
<td>0.572</td>
<td>0.007</td>
<td>1.240</td>
</tr>
<tr>
<td>Shortwave Infrared 1 (SWIR 1)</td>
<td>0.659</td>
<td>0.013</td>
<td>1.898</td>
</tr>
<tr>
<td>Shortwave Infrared 2 (SWIR 2)</td>
<td>0.601</td>
<td>0.015</td>
<td>2.454</td>
</tr>
</tbody>
</table>

Rebuilding coarse TOA spectrum of Libya 4 site based on ‘half square degree’ results, grouping together all observations, gives an approximate idea on the dispersion around each centre band wavelength. The dispersion arising on SWIR1 and SWIR2 measurements would be smaller in the bottom of atmosphere.

TOA Reflectance against band center wavelength (Libya4)

![Graph showing TOA Reflectance](image)

Figure 3 Reflectance profile as indicator of uncertainty.

The figures in Table 5 below show the temporal evolution of TOA measurements over a period of three years. Measurements taken in the early life of the mission have been kept (USGS data) for statistics. For all bands, a very small linear drift of the sensor is observed; it does not affect the correctness of the physical measurement because change mainly occurs at the beginning of the series. If one considers a smaller period, the results are totally stable.

In addition, series have been built up based on USGS and ESA products. For common observation dates, statistical comparison has been done; in all cases both data are the same and confirm results obtained during USGS certification exercises.

3 “Landsat Data Continuity Mission (LDCM) International Ground Station (IGS) Data Validation and Exchange (DV&E) and Certification Plan LS IC - 12 Version 2.0”
Table 5 Landsat 8, OLI statistics on Temporal Stability of radiometric calibration.
5. GEOMETRIC ACCURACY STABILITY

5.1 Objectives

The objective is to assess geometric stability of Landsat 8 data. According to the USGS certification document, the standard deviation of the difference in the line and sample components between L1T reference product band and each L1T corresponding product band should be less than 12m.

5.2 Methods

The input panchromatic image (band 8), included in L1T products (image resampled to pixel size of 15m), is validated against a ‘reference’ panchromatic image originating from Landsat 8 OLI. The comparison is therefore relative. These results complement the Interband registration results and registration of multi spectral bands against the panchromatic band is analysed.

The method is based on the following generic processing stages:

1. Dense matching processing between reference image and input image from the working data stack;
2. Filtering and analysis of image matching results (correlation grid);
3. Accuracy analysis based on filtered data.

Different geodetic accuracy metrics are proposed for the analysis; for instance, the root mean square and the circular error. It is important to distinguish between ‘product’ and ‘multi temporal’ metrics, therefore:

- A ‘product’ circular error at 90 percentile considers sample data of results obtained at pixel level
- A ‘multi temporal’ circular error at 90 percentile considers sample data of results obtained at product level

The results on each product are analysed and are aggregated in order to produce multi temporal accuracy presented herein.

In some sites, different regions exist, and therefore, results from different regions of the same scene are statistically compared. For details regarding reference products used for each test site please refer to section 7.

5.3 Results and Discussions

Starting from 61 L1T products, the geometry of 43 panchromatic band images have been checked: the multi temporal statistics have been computed over a period from the beginning of the year 2015 up to now. The sample data has been filtered, selecting cloud free data, and also removing those for which anomalies have been found (anomalies are discussed above).

As detailed below, the input data sample includes data from different test sites and also different regions. All the results have been merged together for the purpose of this report.

4 “Landsat Data Continuity Mission (LDCM) International Ground Station (IGS) Data Validation and Exchange (DV&E) and Certification Plan LS IC - 12 Version 2.0”
Differences exist depending on test site location and observation date. For all given test sites the results are mostly stable except one case which is discussed below.

These results show that the mission operational goal is met: For each product, the magnitude of the mis-registration remains mainly below 1 m and the variability is within half the pixel. The temporal variability of the mean errors is also within 1 m, leading to a temporal circular error of 2.29 m.

Table 6 Landsat 8, OLI Panchromatic band – statics on multi temporal geolocation accuracy (m).

<table>
<thead>
<tr>
<th>Accuracy Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Error Easting Direction (MeanX)</td>
<td>-0.35</td>
<td>Error between -2 m and 1.57 m</td>
</tr>
<tr>
<td>Mean Error Northing Direction (MeanY)</td>
<td>-0.37</td>
<td>Error between -2.4 m and 2.0 m</td>
</tr>
<tr>
<td>Standard Deviation Error Easting Direction (Std X)</td>
<td>0.79</td>
<td>Standard deviation of the mean errors. The standard deviation of each product is varying from 2m up to 9 m.</td>
</tr>
<tr>
<td>Standard Deviation Error Northing Direction (Std Y)</td>
<td>1.26</td>
<td>Standard deviation of the mean errors. The standard deviation of each product is varying from 2m up to 11 m.</td>
</tr>
<tr>
<td>Root Mean Square Easting Direction (RMS X)</td>
<td>0.87</td>
<td>-</td>
</tr>
<tr>
<td>Root Mean Square Northing Direction (RMSY)</td>
<td>1.31</td>
<td>-</td>
</tr>
<tr>
<td>Empirical Circular Error 90th Percentile (CE90)</td>
<td>2.29</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 4 below shows a multi temporal circular error plot, where one point depicts one product and the point coordinates is the easting displacement errors (meters) and northing displacement errors (meters). For 90% of the points, the radial error is within 2.29 m.

Also, in the graphic below, the theoretical 1-sigma ellipse is also shown. It is used to assess 2D normal distribution of population (temporal mean errors on each point). In case of normality, the percentage of points should be below 68.3 %. For this experiment, this figure is 50 %.

The results are relative to the quality of the Landsat 8 reference data, which is observed in some cases in a different year and in a different period of the year.
Figure 4 Circular Error and Radial Error Distribution, all products / all sites.

Figure 5 below shows the evolution of the mean error in both Easting and Northing directions for all selected products. The last measurement deviated significantly (4 m error in the Northing direction).

Figure 5 Multi Temporal Evolution of Mean Errors, all products / all sites.
For each test site, the mean errors of multi temporal registration are nearly below 1 metre which is considered excellent. The multi temporal variation of errors ("Std") is mainly due to the test site itself; natural variability of the terrain, agreement with the reference data etc.

The ‘multi temporal’ circular error below is computed based on the input data stack; the more products provided as input, the more relevant results are. As the number of products does not exceed 4, ce90 values are given for indication only.

Table 7 Landsat 8, OLI Panchromatic band – statics on multi temporal geolocation accuracy (meter), per sites.

<table>
<thead>
<tr>
<th>Site (WRS2 Path/Row)</th>
<th>Products/ROI</th>
<th>Mean X</th>
<th>Mean Y</th>
<th>Std X</th>
<th>Std Y</th>
<th>RMS X</th>
<th>RMS Y</th>
<th>RMS 2D</th>
<th>CE90</th>
</tr>
</thead>
<tbody>
<tr>
<td>France La Crau (196 / 30)</td>
<td>9 / 1</td>
<td>0.33</td>
<td>-1.05</td>
<td>0.37</td>
<td>1.36</td>
<td>0.50</td>
<td>1.72</td>
<td>0.70</td>
<td>2.58</td>
</tr>
<tr>
<td>Spain Balears (196 / 32)</td>
<td>8 / 2</td>
<td>-0.53</td>
<td>0.09</td>
<td>0.64</td>
<td>1.26</td>
<td>0.83</td>
<td>1.26</td>
<td>1.17</td>
<td>2.18</td>
</tr>
<tr>
<td>Spain Ibiza (198 / 33)</td>
<td>4 / 2</td>
<td>0.25</td>
<td>0.45</td>
<td>0.69</td>
<td>0.71</td>
<td>0.73</td>
<td>0.84</td>
<td>1.04</td>
<td>1.86</td>
</tr>
<tr>
<td>Spain Grenada (200 / 34)</td>
<td>10 / 1</td>
<td>-1.17</td>
<td>-1.18</td>
<td>0.39</td>
<td>0.72</td>
<td>0.78</td>
<td>1.39</td>
<td>1.76</td>
<td>2.38</td>
</tr>
</tbody>
</table>
5.3.1 General Comments

France – “La Crau” (196 / 30):

The last Landsat 8 panchromatic image is sparsely contaminated with cloud which affects accuracy results, as shown in Figure 7 below.

Spain – “Grenada” (200 / 34):

Test field relief is hilly at the northern part of the image, as the result of shadow negatively affecting the image matching results. The reference date is observed during the winter period, and results are slightly above the mean value during the summer period.

Spain – “Balears” (196 / 32):
Due to cloud coverage, for this reporting period, no appropriate products for this analysis have been selected.
6. INTERBAND REGISTRATION ACCURACY

6.1 Objectives

The objective is to validate band registration accuracy by performing a Band-to-Band (B2B) alignment analysis upon validated products. According to the USGS certification document\(^5\), the RMSE-line and RMSE-sample error threshold for B2B, averaged for all within-band comparisons is:

- 0.15 pixels (4.5m) for OLI
- 0.18 pixels (18m) for TIRS
- 0.3 pixels (30m) for OLI/TIRS comparisons

6.2 Methods

The interband registration accuracy is assessed with the analysis of image matching results based on image pixels for which the correlation confident is above 0.95. The image twins as input of image matching are the following ones:

- OLI Band Twin : [2,3], [3,4], [4,5], [5,6], [6,2]
- TIRS Band Twin : [10,11]
- OLI/TIRS comparisons : [5,10]

The registration between the NIR band and panchromatic band is evaluated separately.

In case of OLI bands, the same pixel candidates are considered for all image twins and the transitivity of results is checked in order to evaluate the error budget. With this approach, it might happen that the number of pixels is too small to provide consistent results; therefore the selection of test site becomes critical.

The registration accuracy is also evaluated from a multi temporal point of view. The two sites considered are mostly the La Crau site (France) and the Grenada site (Spain).

6.3 Results and Discussions

6.3.1 OLI Multi spectral

One product observed over La Crau, France, has been considered as input to this analysis, the matching quality depends on the image twin with spectral bands involved. The influence of the atmosphere is significant in the NIR and the SWIR bands which introduce spectral variability between two bands, as well as noise.

Consequently, with less confident pixels, results for band twins [4, 5] and [5, 6] remain accurate but not as precise as we might expect. Regarding mean errors, the transitivity test indicates a deviation of 0.57 m in the easting direction and 0.17 m in the northing directions which is, to a certain extent, still within the error budget of the method.

Table 8 below summarizes geometric registration accuracy results for band twins; [2,3], [3,4], [4,5], [5,6], [6,2] for the France La Crau product LC81960302016316MTI00 (Results obtained on product LC81960302015153MTI00 are also indicated in ‘()’).

\(^5\) “Landsat Data Continuity Mission (LDCM) International Ground Station (IGS) Data Validation and Exchange (DV&E) and Certification Plan LS IC - 12 Version 2.0”
Compared to previous results, the accuracy is degraded. This is most likely due to the nebulosity of the input scene which degrades the image matching accuracy as it has a reduced number of candidate pixels for computing statistics. It is however demonstrated that the results are within the USGS specifications for band twins [2,3] and [3,4].

Table 8 Landsat 8, OLI MS bands – statics on band to band registration accuracy (m).

<table>
<thead>
<tr>
<th>Accuracy Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Error Easting Direction (MeanX)</td>
<td>-0.11/(-0.08)</td>
<td>Error between -0.52 m and -0.08 m</td>
</tr>
<tr>
<td>Mean Error Northing Direction (MeanY)</td>
<td>-0.03/(-0.03)</td>
<td>Error between -1 m and -0.5 m</td>
</tr>
<tr>
<td>Standard Deviation Error Easting Direction (StdX)</td>
<td>0.47/(0.15)</td>
<td>Standard deviation values are higher for band 2.7 and 10.</td>
</tr>
<tr>
<td>Standard Deviation Error Northing Direction (StdY)</td>
<td>0.25/(0.19)</td>
<td>Standard deviation values are higher for band 2.7 and 12.</td>
</tr>
<tr>
<td>Root Mean Square Easting Direction (RMSX)</td>
<td>0.48/(0.17)</td>
<td>For band twin [4,5], [5,6] and [6,2], the RMS results exceed 9.8 m. This is due to the accuracy of the method.</td>
</tr>
<tr>
<td>Root Mean Square Northing Direction (RMSY)</td>
<td>0.25/(0.20)</td>
<td>For band twin [4,5], [5,6] and [6,2], the RMS results exceed 8.8 m. This is due to the accuracy of the method.</td>
</tr>
<tr>
<td>Empirical Circular Error 90th Percentile (CE90)</td>
<td>0.66/(0.24)</td>
<td>For band twin [4,5], [5,6] and [6,2], the RMS results exceed 13 m. This is due to the accuracy of the method.</td>
</tr>
</tbody>
</table>
6.3.2 TIRS Band Twin

For "LC81960302016316MTI00", the quality of band to band registration between the two TIRS bands (B10 and B11) has been assessed. Due to an anomaly in Band 11, as shown in Figure 9, the results do not reach the operational goal: the RMS accuracy is about 50 m.
6.3.3 OLI / TIRS

The method compares registration between the TIRS band 10 image and the OLI band 5 image. For this input dataset, results obtained are not reliable and cannot be used for reporting.

6.3.4 OLI Panchromatic / Multi Spectral Bands

The method compares registration between the panchromatic image rescaled to 30 m and selected multi spectral bands and thermal bands.

Results below are those obtained for “LC81960302016316MTI00”, the registration accuracy between the panchromatic image and multi spectral images has been assessed. All possible band combinations have been performed. In general, the results of the following band twins [8,5] and [8,6] are statistically less significant because of image matching issues. All band twins results are aggregated together to provide synthetic results, as listed in Table 9 below, the results are fully compliant with the specification.

Table 9 Landsat 8, OLI PAN/MS bands – statics on band to band registration accuracy (m).

<table>
<thead>
<tr>
<th>Accuracy Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Error Easting Direction (MeanX)</td>
<td>-0.17</td>
<td>Below 1 m for all bands</td>
</tr>
<tr>
<td>Mean Error Northing Direction (MeanY)</td>
<td>-0.10</td>
<td>Below 1 m for all bands</td>
</tr>
<tr>
<td>Standard Deviation Error Easting Direction (Std X)</td>
<td>0.38</td>
<td>Large std values observed for twin [5.8] [6.8] , about 12 m</td>
</tr>
<tr>
<td>Accuracy Parameter</td>
<td>Value</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Standard Deviation Error Northing Direction (Std Y)</td>
<td>0.14</td>
<td>Large std values observed for twin [5,8] [6,8], about 12 m</td>
</tr>
<tr>
<td>Root Mean Square Easting Direction (RMS X)</td>
<td>0.42</td>
<td>Value is stable for bands (3,4,5) and bands (5,6), respectively 3.7 m and 12 m</td>
</tr>
<tr>
<td>Root Mean Square Northing Direction (RMSY)</td>
<td>0.17</td>
<td>Value is stable for bands (3,4,5) and bands (5,6), respectively 3.5 m and 11 m</td>
</tr>
<tr>
<td>Empirical Circular Error 90th Percentile (CE90)</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>
7. TEST SITE DESCRIPTION

7.1 Geometric Test Sites

Seven geometric test sites have been defined, and four are currently used for the purpose of this analysis:

- France / La Crau and Spain / Balears sites belong to the same LS08 satellite path and we expect to analyse accuracy changes over a short term period. Geometric references exist in La Crau and other datasets are available for cross comparison.
- Spain / Ibiza site has been selected because two regions are located in opposite parts of the scene and results can therefore be statistically compared in order to analyse the stability in the scene.
- Spain / Grenada has been selected to maximize the number of cloud-free products acquired over a full year. The test field is centred on Sierra Nevada Park and the content of the site and terrain relief varies from north to south.

Figure 10 Geometric Test sites
Table 10 Geometric Test site details

<table>
<thead>
<tr>
<th>Country / Site Name</th>
<th>Landsat WRS2 Path/Row</th>
<th>Center Latitude (dd)/Longitude (dd)</th>
<th>Number of ROIs</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>France / La Crau</td>
<td>196/30</td>
<td>43.85 / 5.18</td>
<td>1</td>
<td>HR Data GCP from GPS Test fields Campaign ‘LC81960302015153MTI00’</td>
</tr>
<tr>
<td>Spain / Balears</td>
<td>196/32</td>
<td>39.71 / 3.62</td>
<td>2</td>
<td>‘LC81960322016012MTI00’</td>
</tr>
<tr>
<td>Spain / Ibiza</td>
<td>198/33</td>
<td>38.80 / 0.59</td>
<td>2</td>
<td>‘LC81980332016090MTI00’</td>
</tr>
<tr>
<td>Spain / Grenada</td>
<td>200/34</td>
<td>37.35 / -3.2</td>
<td>2</td>
<td>‘LC82000342016008MTI00’</td>
</tr>
<tr>
<td>France / Toulouse</td>
<td></td>
<td></td>
<td></td>
<td>GCP from GPS Test fields Campaign</td>
</tr>
<tr>
<td>Italy / Rome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy / Piemont</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The three last rows of Table 10 above list sites not already used in the context of this work, but which are planned to be for future analysis.

Figure 11 Geometric Test sites: France La Crau ROI

For the purpose of the interband registration accuracy analysis, all the sites have been evaluated with the La Crau ROI offering the best results as it is largely spectrally stable and includes suitable features for matching (at the LS08 spatial scale).

7.2 Radiometric Test Sites

Regarding radiometric calibration, the Libya 4 test site is used (Path / Row 181 / 40). For more information on Libya 4 please refer to details in the document above.
Figure 12 Radiometric Test site, Libya 4
APPENDIX A GEOMETRIC SITE PRODUCT LIST

Listed below are all products used as input to our processing. For multi temporal geolocation accuracy, the reference data is part of the input dataset; these products are indicated with '[REF]'. The data used to update the statistical results (the new products acquired each month), are indicated in green. Also, the processing level of input data is mostly 'Level 1T'. In cases where the processing level is different i.e. L1Gt, this information is also reported. Note that 'L1Gt' products are used for the monitoring of radiometric stability and band to band registration. However, 'L1Gt' products are not used as input of the geometric accuracy stability assessment.

7.2.1 France / La Crau (196 / 30)
- LC81960302015153MTI00 [REF]
- LC81960302015185MTI00
- LC81960302015233MTI00
- LC81960302015313MTI00
- LC81960302016012MTI00
- LC81960302016124MTI00
- LC81960302016172MTI00
- LC81960302016188MTI00
- LC81960302016220MTI00
- LC81960302016236MTI00
- LC81960302016248MTI00
- LC81960302016252MTI00
- LC81960302016284MTI00
- LC81960302016316MTI00

7.2.2 Spain / Balears (196 / 32)
- LC81960322016012MTI00 [REF]
- LC81960322016124MTI00
- LC81960322016172MTI00
- LC81960322016188MTI00
- LC81960322016204MTI00
- LC81960322016220MTI00
- LC81960322016236MTI00
- LC81960322016252MTI00
- LC81960322016316MTI00

7.2.3 Spain / Ibiza (198 / 33)
- LC81980332016090MTI00 – [REF]
- LC81980332016154MTI00
- LC81980332016122MTI00
- LC81980332016250MTI00
- LC81980332016298MTI00
- LC81980332016314MTI00
7.2.4 Spain / Grenada (200 / 34)

- LC82000342016008MTI00 – [REF]
- LC82000342016056MTI00
- LC82000342016088MTI00
- LC82000342016200MTI00
- LC82000342016040MTI00
- LC82000342016072MTI00
- LC82000342016184MTI00
- LC82000342016216MTI00
- LC82000342016232MTI00
- LC82000342016248MTI00
- LC82000342016280MTI00
- LC82000342016312MTI00 (L1Gt, not processed (checked in January))
- LC81960302016328MTI00 (L1Gt, not processed (checked in January))