S3-A SRAL Cyclic Performance Report

Cycle No. 027

Start date: 20/12/2017
End date: 12/02/2018

Ref.: S3MPC.ISR.PR.04-027
Issue: 1.0
Date: 15/02/2018
Contract: 4000111836/14/I-LG
Customer:	ESA
Document Ref.:	S3MPC.ISR.PR.04-027
Contract No.:	4000111836/14/I-LG
Date:	15/02/2018
isardSAT Doc. Ref.:	ISARD_ESA_S3_MPC_RP_616
Issue:	1.0

Project:	PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION
Title:	S3-A SRAL Cyclic Performance Report
Author(s):	Pablo García, Albert García (isardSAT)
Approved by:	G. Quartly, STM ESL Coordinator
Authorized by:	Sylvie Labroue, STM Technical Performance Manager
Distribution:	ESA, EUMETSAT, S3MPC consortium
Accepted by ESA	P. Féménias, MPC TO

| **Filename** | S3MPC.ISR.PR.04-027 - i1r0 - SRAL Cyclic Report 027.docx |

Disclaimer

The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.
Changes Log

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>15/02/2018</td>
<td>First Version</td>
</tr>
</tbody>
</table>

List of Changes

<table>
<thead>
<tr>
<th>Version</th>
<th>Section</th>
<th>Answers to RID</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of content

1 INTRODUCTION .. 1

1.1 SCOPE OF THE DOCUMENT .. 1
1.2 ACRONYMS ... 1
1.3 PROCESSING BASELINE VERSION ... 1

2 SRAL INTERNAL CALIBRATION MONITORING ... 2

2.1 INTRODUCTION ... 2
2.2 CYCLIC IN-FLIGHT INTERNAL CALIBRATION .. 3
 2.2.1 CAL1 LRM .. 3
 2.2.2 CAL1 SAR .. 9
 2.2.3 System Transfer Function (CAL2) .. 17
 2.2.4 AutoCAL (CAL1 SAR Auto) ... 21
 2.2.5 On-board Clock Performance ... 22
 2.2.6 Housekeeping Temperatures ... 24
2.3 CYCLIC SRAL STATUS SUMMARY .. 27
2.4 MISSION SRAL STATUS SUMMARY ... 28
2.5 SRAL DEDICATED INVESTIGATIONS .. 37

3 CALIBRATION WITH TRANSPONDER ... 38

4 EVENTS ... 43

5 APPENDIX A ... 44
List of Figures

Figure 2-1. Location of the CAL1 LRM measurements. .. 3
Figure 2-2. CAL1 LRM Ku Time Delay related variables trend. The green line (Diff of travel between Tx & Rx lines) is hidden below the blue line (PTR Median Delay). .. 4
Figure 2-3. CAL1 LRM C Time Delay related variables trend. .. 4
Figure 2-4. CAL1 LRM Ku Power Trend. .. 5
Figure 2-5. CAL1 LRM C Power Trend. ... 5
Figure 2-6. CAL1 LRM Ku PTR width trend. .. 6
Figure 2-7. CAL1 LRM C PTR width trend. .. 6
Figure 2-8. CAL1 LRM Ku PTR secondary lobes Power and Position within the PTR waveform. .. 7
Figure 2-9. CAL1 LRM C PTR secondary lobes Power and Position within the PTR waveform. .. 7
Figure 2-10. CAL1 LRM PTR secondary lobes characterisation. The inter-annual slope (in dB/year) and standard deviation (in dBx10^-2) of each of the secondary lobes during the period are shown. 8
Figure 2-11. Location of the CAL1 SAR measurements. .. 9
Figure 2-12. CAL1 SAR Ku Time Delay related variables trend. 10
Figure 2-13. CAL1 SAR C Time Delay related variables trend. The green line (Diff of travel between Tx & Rx lines) could be hidden below the blue line (PTR Median Delay). .. 10
Figure 2-14. CAL1 SAR Ku Power Trend. .. 11
Figure 2-15. CAL1 SAR C Power Trend. ... 11
Figure 2-16. CAL1 SAR Ku PTR width trend. .. 12
Figure 2-17. CAL1 SAR C PTR width trend. .. 12
Figure 2-18. CAL1 SAR Ku PTR secondary lobes Power and Position within the PTR waveform. .. 13
Figure 2-19. CAL1 SAR C PTR secondary lobes Power and Position within the PTR waveform. .. 13
Figure 2-20. CAL1 SAR PTR secondary lobes characterisation. The inter-annual slope (in dB/year) and standard deviation (in dBx10^-2) of each of the secondary lobes during the analysed period are shown. 14
Figure 2-21. CAL1 SAR Ku Power intra-burst correction along the period. 15
Figure 2-22. CAL1 SAR Ku Phase intra-burst correction along the period. 15
Figure 2-23. CAL1 SAR Ku Phase & Power intra-burst corrections slopes over the analysis period. .. 16
Figure 2-24. Pulse by pulse standard deviations of the CAL1 SAR Ku Power and Phase intra-burst corrections. .. 16
Figure 2-25. Location of the CAL2 measurements. ... 17
Figure 2-26. Averaged CAL2 Ku and C waveforms over the period................................ 17
Figure 2-27. CAL2 Ku waveforms over the period. ... 18
Figure 2-28. CAL2 C waveforms over the period. .. 18
Figure 2-29. CAL2 Ku waveforms right (blue) and left (red) sides Slope over the period. 19
Figure 2-30. CAL2 C waveforms right (blue) and left (red) sides Slope over the period. 19
Figure 2-31. CAL2 Ku waveforms right (blue) and left (red) sides Standard Deviation over the period. 20
Figure 2-32. CAL2 C waveforms right (blue) and left (red) sides Standard Deviation over the period. 20
Figure 2-33. Location of the AutoCal measurements. .. 21
Figure 2-34. AutoCal measurements: Corrected - Reference. Averaged over the analysis period. 21
Figure 2-35. USO frequency as in USO Auxiliary File. The results depicted are in Hz and correspond to the Delta with respect to the 10 MHz USO nominal frequency. .. 22
Figure 2-36. USO frequency impact in range, considering a circular orbit at 815 Km over a circular earth (constant echo travel). .. 22
Figure 2-37. First group of Thermistors time series on CAL1 LRM IQ mode. The temperatures are averaged for each calibration product over the analysis period. .. 24
Figure 2-38. Second group of Thermistors time series on CAL1 LRM IQ mode. The temperatures are averaged for each calibration product over the analysis period. .. 24
Figure 2-39. First group of Thermistors time series on CAL1 SAR mode. The temperatures are averaged for each calibration product over the analysis period. .. 25
Figure 2-40. Second group of Thermistors time series on CAL1 SAR mode. The temperatures are averaged for each calibration product over the analysis period. .. 25
Figure 2-41. First group of Thermistors time series on CAL2 mode. The temperatures are averaged for each calibration product over the analysis period. .. 26
Figure 2-42. Second group of Thermistors time series on CAL2 mode. The temperatures are averaged for each calibration product over the analysis period. .. 26
Figure 2-43. CAL1 SAR Ku Time Delay Whole Mission Trend. ... 29
Figure 2-44. CAL1 SAR Ku Power Whole Mission Trend. ... 29
Figure 2-45. CAL1 SAR Ku PTR Width Whole Mission Trend. .. 30
Figure 2-46. CAL1 SAR Ku Phase & Power intra-burst corrections slopes along the whole mission. 30
Figure 2-47. CAL1 SAR Ku Power intra-burst correction along the whole mission. 31
Figure 2-48. CAL1 SAR Ku Phase intra-burst correction along the whole mission. 31
Figure 2-49. CAL2 Ku waveforms ripples over the whole mission. .. 32
Figure 2-50. Slope at each side of the CAL2 Ku waveform, averaged over the whole mission. 32
Figure 2-51. CAL2 Ku waveform standard deviation at each side after compensating by the slope, averaged over the whole mission. ... 33
Figure 2-52. Autocal measurements: Corrected - Reference. Averaged over the whole mission. 33

Figure 2-53. AutoCAL attenuation whole mission progression for Ku-band. Difference in dB with respect to the previous attenuation value, for each attenuation step. 34

Figure 2-54. AutoCAL attenuation whole mission progression for C-band. Difference in dB with respect to the previous attenuation value, for each attenuation step. 34

Figure 2-55. CAL1 SAR thermistors series along the whole mission. First group. 35

Figure 2-56. CAL1 SAR thermistors series along the whole mission. Second group. 35

Figure 3-1. Range Bias Results. 41

Figure 3-2. Datation Bias Results. 41

Figure 3-3. Alignment Results. 42

Figure 3-4. Stack Noise Results. 42
List of Tables

Table 2-1. Collection of calibration parameters statistics for all modes and bands covering the cycle period. 27
Table 2-2. Collection of calibration parameters statistics for all modes and bands covering the whole mission. 37
Table 3-1. Results of TRP passes processing 39
Table 3-2. Geophysical Corrections of TRP passes processing 40
1 Introduction

1.1 Scope of the document

This document is dedicated to the cyclic monitoring report of the SRAL calibration parameters within the Sentinel-3 MPC project. This includes also a whole mission analysis.

1.2 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Auxiliary Data File</td>
</tr>
<tr>
<td>Cal/Val</td>
<td>Calibration / Validation</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Études Spatiales</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESL</td>
<td>Expert Support Laboratory</td>
</tr>
<tr>
<td>ESTEC</td>
<td>European Space Technology Centre</td>
</tr>
<tr>
<td>HKTM</td>
<td>House Keeping Temperatures Monitoring</td>
</tr>
<tr>
<td>IOCR</td>
<td>In-Orbit Commissioning Review</td>
</tr>
<tr>
<td>LRM</td>
<td>Low Resolution Mode</td>
</tr>
<tr>
<td>MPC</td>
<td>Mission Performance Centre</td>
</tr>
<tr>
<td>PTR</td>
<td>Point Target Response</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SCCDB</td>
<td>Satellite Calibration and Characterisation Database</td>
</tr>
<tr>
<td>SCT</td>
<td>Satellite Commissioning Team</td>
</tr>
<tr>
<td>SRAL</td>
<td>Synthetic Aperture Radar Altimeter</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Done</td>
</tr>
</tbody>
</table>

1.3 Processing Baseline Version

<table>
<thead>
<tr>
<th>IPF</th>
<th>IPF / Processing Baseline version</th>
<th>Date of deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1</td>
<td>06.12 / 2.25</td>
<td>CGS: 13/12/2017 09:59 UTC (NRT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAC: 13/12/2017 09:59 UTC (STC/NTC)</td>
</tr>
</tbody>
</table>
2 SRAL Internal Calibration Monitoring.

2.1 Introduction

The SRAL instrumental calibration is assessed during the mission. Several parameters are monitored and analysed in detail in order to characterise the altimeter performance along the mission lifetime.

Two main groups of calibration parameters are monitored.

The first is derived from the Point Target Response (PTR) calibration in CAL1 mode. The PTR signal follows the same circuitry path as the science waveforms within the calibration loop. The delay caused by the travel through the calibration path can be measured and afterwards compensated in the total range computation. The attenuation suffered by the signal when traveling through the instrument also needs to be monitored and the science waveforms need to be compensated for this power variations. Moreover, there are a collection of other parameters to be checked, such as the PTR width and the secondary lobes features. These CAL1 parameters are produced separately for LRM and SAR modes, as they follow different instrumental paths, and also they are duplicated for Ku-band and C-band. Moreover there are different options for characterising the delay and power of the closed loop signal, such as the PTR maximum power or PTR maximum position.

The second is related to the Instrument Transfer Function, measured by the CAL2 mode. The science waveforms spectra is distorted by the on-board instrumental hardware sections. Therefore, in order to retrieve the original echo shape, we need to compensate for this effect. Several parameters are derived from the analysis of the CAL2 waveforms for characterizing it and dissect any feature along the mission lifetime. The CAL2 waveform is the same for both modes LRM and SAR, but there is a distinction between bands Ku and C.

Additionally, for SAR mode, the two intra-burst corrections are monitored: they are the power and phase progressions within a burst. Science pulses within a burst are to be corrected for these expected variations in the burst. Some characteristics are computed for describing and following up their behaviour along the S3 mission.

It is also of major importance the monitoring of the on-board clocks. The altimeter clock counter, responsible for computing the echo travel time, has a multiplicative impact in the range determination. The platform clock is responsible for the overall platform instruments datation. Their stability and performance are to be supervised along the mission.

Finally, the data coming from the thermistors located in the different sections of the on-board HW (HKTM products), are to be analysed in order to check the relation of any calibration parameters anomaly with the thermal behaviour, and find solutions for modelling the instrument characterisation (for instance orbital oscillations) if needed.
An important remark is to be made: although we can see a certain drift of a specific calibration parameter along the mission, this is not to be considered as a warning for the quality of the science data, as long as the instrumental calibration is correctly applied during the science data processing. A warning shall be raised in the scenario of a calibration parameter value approaching the mission requirement bounds.

2.2 Cyclic In-Flight Internal Calibration.

In this chapter, the monitoring of all calibration modes main parameters is depicted in figures. An analysis of the cycle results is developed in chapter 2.3.

2.2.1 CAL1 LRM

![Figure 2-1. Location of the CAL1 LRM measurements.](image-url)
Period trend of all CAL1 PTR Delay related variables for LRM mode.

Figure 2-2. CAL1 LRM Ku Time Delay related variables trend. The green line (Diff of travel between Tx & Rx lines) is hidden below the blue line (PTR Median Delay).

Figure 2-3. CAL1 LRM C Time Delay related variables trend.
Period trend of the PTR Total and Maximum Power for LRM mode.

Figure 2-4. CAL1 LRM Ku Power Trend.

Figure 2-5. CAL1 LRM C Power Trend.
Period trend of the CAL1 PTR width for LRM mode.

Figure 2-6. CAL1 LRM Ku PTR width trend.

Figure 2-7. CAL1 LRM C PTR width trend.
Distribution of the PTR secondary lobes within the CAL1 PTR waveform for LRM mode.

S3 SRAL CAL1 LRM Ku Secondary Lobes Distribution. From 16-Jan-2018 to 12-Feb-2018.

Figure 2-8. CAL1 LRM Ku PTR secondary lobes Power and Position within the PTR waveform.

S3 SRAL CAL1 LRM C Secondary Lobes Distribution. From 16-Jan-2018 to 12-Feb-2018.

Figure 2-9. CAL1 LRM C PTR secondary lobes Power and Position within the PTR waveform.
Figure 2-10. CAL1 LRM PTR secondary lobes characterisation. The inter-annual slope (in dB/year) and standard deviation (in dBx10^-2) of each of the secondary lobes during the period are shown.
2.2.2 CAL1 SAR

Figure 2-11. Location of the CAL1 SAR measurements.
Period trend of all CAL1 PTR Delay related variables for SAR mode.

Figure 2-12. CAL1 SAR Ku Time Delay related variables trend.

Figure 2-13. CAL1 SAR C Time Delay related variables trend. The green line (Diff of travel between Tx & Rx lines) could be hidden below the blue line (PTR Median Delay).
Period trend of the PTR Total and Maximum Power for SAR mode.

Figure 2-14. CAL1 SAR Ku Power Trend.

Figure 2-15. CAL1 SAR C Power Trend.
Period trend of the CAL1 PTR width for SAR mode.

Figure 2-16. CAL1 SAR Ku PTR width trend.

Figure 2-17. CAL1 SAR C PTR width trend.
Distribution of the PTR secondary lobes within the CAL1 PTR waveform for SAR mode.

Figure 2-18. CAL1 SAR Ku PTR secondary lobes Power and Position within the PTR waveform.

Figure 2-19. CAL1 SAR C PTR secondary lobes Power and Position within the PTR waveform.
Figure 2-20. CAL1 SAR PTR secondary lobes characterisation. The inter-annual slope (in dB/year) and standard deviation (in dBx10^-2) of each of the secondary lobes during the analysed period are shown.
CAL1 SAR mode Ku intra-burst corrections: Power and Phase.

Figure 2-21. CAL1 SAR Ku Power intra-burst correction along the period.

Figure 2-22. CAL1 SAR Ku Phase intra-burst correction along the period.
Figure 2-23. CAL1 SAR Ku Phase & Power intra-burst corrections slopes over the analysis period.

Figure 2-24. Pulse by pulse standard deviations of the CAL1 SAR Ku Power and Phase intra-burst corrections.
2.2.3 System Transfer Function (CAL2)

Figure 2-25. Location of the CAL2 measurements.

Figure 2-26. Averaged CAL2 Ku and C waveforms over the period.
Mesh of CAL2 waveforms.

Figure 2-27. CAL2 Ku waveforms over the period.

Figure 2-28. CAL2 C waveforms over the period.
Time series of CAL2 waveforms right and left sides Slope.

Figure 2-29. CAL2 Ku waveforms right (blue) and left (red) sides Slope over the period.

Figure 2-30. CAL2 C waveforms right (blue) and left (red) sides Slope over the period.
Time series of CAL2 waveforms right and left sides Standard Deviation.

Figure 2-31. CAL2 Ku waveforms right (blue) and left (red) sides Standard Deviation over the period.

Figure 2-32. CAL2 C waveforms right (blue) and left (red) sides Standard Deviation over the period.
2.2.4 AutoCAL (CAL1 SAR Auto)

Figure 2-33. Location of the AutoCal measurements.

Figure 2-34. AutoCal measurements: Corrected - Reference. Averaged over the analysis period.
2.2.5 On-board Clock Performance

The altimeter USO clock frequency has a major multiplicative impact in the determination of the altimeter range. The USO clock is the one that drives the chirp generation and controls the acquisition time (window delay or tracker range) of the returned echo signal. Here below are depicted the USO frequency long term monitoring (Figure 2-35) and its impact in the altimeter range (Figure 2-36).

![Time series of the USO frequency.](image1)

Figure 2-35. USO frequency as in USO Auxiliary File. The results depicted are in Hz and correspond to the Delta with respect to the 10 MHz USO nominal frequency.

![USO frequency impact in range.](image2)

Figure 2-36. USO frequency impact in range, considering a circular orbit at 815 Km over a circular earth (constant echo travel).

The trend of the altimeter USO clock impact in the range is constant and about 5 mm per year.
The USO impact in the range can change around an orbit considering an elliptical orbit and the variations on the surface elevations, but these changes are far below the nominal absolute values.

Also the temperatures on-board can make the clock to suffer frequency fluctuations, but as we can see in the previous figures, no visible effects of this kind has been observed so far.
2.2.6 Housekeeping Temperatures

Time series of thermistors temperatures on CAL1 LRM IQ mode over the analysed period.

Figure 2-37. First group of Thermistors time series on CAL1 LRM IQ mode. The temperatures are averaged for each calibration product over the analysis period.

Figure 2-38. Second group of Thermistors time series on CAL1 LRM IQ mode. The temperatures are averaged for each calibration product over the analysis period.
Time series of thermistors temperatures on CAL1 SAR mode over the analysed period.

Figure 2-39. First group of Thermistors time series on CAL1 SAR mode. The temperatures are averaged for each calibration product over the analysis period.

Figure 2-40. Second group of Thermistors time series on CAL1 SAR mode. The temperatures are averaged for each calibration product over the analysis period.
Time series of thermistors temperatures on CAL2 mode over the analysed period.

Figure 2-41. First group of Thermistors time series on CAL2 mode. The temperatures are averaged for each calibration product over the analysis period.

Figure 2-42. Second group of Thermistors time series on CAL2 mode. The temperatures are averaged for each calibration product over the analysis period.
2.3 Cyclic SRAL Status Summary

This section is dedicated to a summary of the cyclic performances and status of the altimeter parameters exposed in section 2.2.

For the analysed period, none of the calibration parameters is showing a significant anomalous behaviour. Nonetheless some specific observations are explained here below.

As expected, the Ku band (SAR science main band) calibration parameters performances are better (less data dispersion) than the ones from the C band.

In general, the LRM and SAR performances are similar for a given band (Ku or C).

In Table 2-1 the main CAL1 parameters statistics are detailed.

<table>
<thead>
<tr>
<th>Calibration Parameter</th>
<th>Ku band mean</th>
<th>annual slope</th>
<th>standard deviation</th>
<th>C band mean</th>
<th>annual slope</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRM CAL1 time delay</td>
<td>1.0068 m</td>
<td>-0.88 mm</td>
<td>0.62 mm</td>
<td>0.8930 m</td>
<td>-2.52 mm</td>
<td>3.02 mm</td>
</tr>
<tr>
<td>SAR CAL1 time delay</td>
<td>1.0066 m</td>
<td>-0.86 mm</td>
<td>0.62 mm</td>
<td>0.8936 m</td>
<td>-2.60 mm</td>
<td>3.03 mm</td>
</tr>
<tr>
<td>LRM CAL1 power</td>
<td>57.58 dB</td>
<td>-0.337 dB</td>
<td>0.05 dB</td>
<td>51.39 dB</td>
<td>-1.43 dB</td>
<td>0.19 dB</td>
</tr>
<tr>
<td>SAR CAL1 power</td>
<td>62.00 dB</td>
<td>-0.331 dB</td>
<td>0.05 dB</td>
<td>48.90 dB</td>
<td>-1.43 dB</td>
<td>0.19 dB</td>
</tr>
<tr>
<td>LRM CAL1 PTR width</td>
<td>0.4159 m</td>
<td>0.119 mm</td>
<td>1.13 mm</td>
<td>0.4543 m</td>
<td>-3.21 mm</td>
<td>7.37 mm</td>
</tr>
<tr>
<td>SAR CAL1 PTR width</td>
<td>0.4156 m</td>
<td>0.117 mm</td>
<td>1.13 mm</td>
<td>0.4542 m</td>
<td>-3.10 mm</td>
<td>7.37 mm</td>
</tr>
</tbody>
</table>

Table 2-1. Collection of calibration parameters statistics for all modes and bands covering the cycle period.

The CAL1 power trend for Ku band is no longer close to -1 dB/yr as at the first cycles of the mission (see section 2.4). It follows a decreasing trend but is slowly becoming less negative. The CAL1 power trend for C band has been changing its trend sign from cycle to cycle.

The Ku band CAL1 time delay slope has been changing its trend sign along the mission, with values in the order of few mm/year, usually with negative values, but with a general tendency to have positive values in the future.
The Ku band CAL1 width inter-annual drift is several orders of magnitude below the nominal PTR width value (Ku-band) and comparable to its standard deviation.

After a L1B IPF code fix on the CAL1 intra-burst corrections, the Burst Power correction noise is highly reduced (from 80 mdB to around 0.6 mdB), and the Burst Phase correction is reversed with respect to the previous version. A much more stable value of the burst power slope is now revealed.

The thermistors values are showing a stable series over the analysed period.

CAL2 and Autocal parameters are stable.

All these observations are related to the different SRAL calibration parameters during this cycle. A whole mission observation is developed in section 2.4.

2.4 Mission SRAL Status Summary

The main L1b calibration parameters series are gathered and plotted in this section, in order to observe their whole mission behaviour. For the sake of simplicity, the C band and the LRM mode have been excluded.

The plotted calibration parameters are:

- CAL1 time delay
- CAL1 power
- PTR width
- Burst corrections (power and phase) and their slopes
- CAL2 waveform ripples shape, plus the waveforms slopes and de-trended standard deviations
- Autocal averaged differences and attenuation progression

Also the SAR mode thermistors series is plotted.
Figure 2-43. CAL1 SAR Ku Time Delay Whole Mission Trend.

Figure 2-44. CAL1 SAR Ku Power Whole Mission Trend.
Figure 2-45. CAL1 SAR Ku PTR Width Whole Mission Trend.

Figure 2-46. CAL1 SAR Ku Phase & Power intra-burst corrections slopes along the whole mission.
CAL1 SAR mode Ku intra-burst corrections: Power and Phase.

Figure 2-47. CAL1 SAR Ku Power intra-burst correction along the whole mission.

Figure 2-48. CAL1 SAR Ku Phase intra-burst correction along the whole mission.
Figure 2-49. CAL2 Ku waveforms ripples over the whole mission.

Figure 2-50. Slope at each side of the CAL2 Ku waveform, averaged over the whole mission.
Figure 2-51. CAL2 Ku waveform standard deviation at each side after compensating by the slope, averaged over the whole mission.

Figure 2-52. Autocal measurements: Corrected - Reference. Averaged over the whole mission.
AutoCAL attenuation progression series.

Figure 2-53. AutoCAL attenuation whole mission progression for Ku-band. Difference in dB with respect to the previous attenuation value, for each attenuation step.

Figure 2-54. AutoCAL attenuation whole mission progression for C-band. Difference in dB with respect to the previous attenuation value, for each attenuation step.
So far the only clear and notable drift observed in the whole mission series is in the CAL1 Ku Power series, where we observe a significant power decay. Anyhow, it has decreased the observed trend in the last cycles. In cycles 8, 18 and 27 the whole mission SAR Ku Total Power trend in absolute values was respectively of 0.89, 0.61, and 0.51 dB/year. Hence, we can state a slow stabilisation of this parameter.
Also the PTR time delay has decreased its negative trend. In cycles 8, 18 and 27 the whole mission SAR Ku Time Delay trend in absolute values was respectively of 1.96, 1.13 and 0.81 mm/year.

The Ku band PTR width has a trend that is three orders of magnitude below its absolute value, and half the value of its standard deviation.

The attenuation steps progression in dB is shown in Figure 2-53 and Figure 2-54, where we can check, for each attenuation step, the delta in attenuation with respect to the previous value in time. The tendencies are visible for specific attenuations in each band case, with small drifts (see colour code at right hand side) of up to 0.05 dB.

In terms of intra-burst corrections, the new L1B code version, implemented during cycle 15, causes a drastic change in the series. A new whole mission CAL L1B reprocessing campaign shall be done to show a series for both intra-burst corrections without mixing the two versions. Their slopes along the mission are quite stable, except for the burst power correction excursion around decimal year 2017.55. The burst power slope shows a certain annual behaviour. The burst phase slope is increasing along the mission.

The CAL2 parameters behaviour is stable along the mission.

The thermistors data series are generally showing an annual behaviour, and a long term negative drift, as shown in Figure 2-55 and Figure 2-56. Around decimal year 2016.7, 2017.1 and 2017.55, there is an increase of the thermistors values of around 0.2 °C, returning after several orbits to its precedent values.

Finally, the collection of statistics for the main calibration parameters is depicted in Table 2-2 for both modes and bands. Once more we observe the better performance (less standard deviation) of the Ku band with respect to the C band, and the general similar values and trends between modes (with some exceptions such as the time delay slope and the power absolute values).

<table>
<thead>
<tr>
<th>Calibration Parameter</th>
<th>Ku band</th>
<th>C band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>annual slope</td>
</tr>
<tr>
<td>LRM CAL1 time delay</td>
<td>1.0074 m</td>
<td>-1.08 mm</td>
</tr>
<tr>
<td>SAR CAL1 time delay</td>
<td>1.0071 m</td>
<td>-0.81 mm</td>
</tr>
<tr>
<td>LRM CAL1 power</td>
<td>57.92 dB</td>
<td>-0.50 dB</td>
</tr>
<tr>
<td>SAR CAL1 power</td>
<td>62.36 dB</td>
<td>-0.51 dB</td>
</tr>
</tbody>
</table>
The long term drift for the time delay and power variables is higher in absolute terms for the Ku band than for the C band, while the standard deviation is always lower for the Ku band. This means that, although the Ku band chain performance is better than the one from C band, the Ku band ageing is faster than the one from C band, probably caused by the more stressed Ku band instrumental operations (e.g. bursts transmission & reception only in Ku band).

The PTR width standard deviation for the C band is around 6 times higher than the one from the Ku band, for both operational modes.

As a general observation, we can say that the behaviour of all calibration parameters is nominal. Nevertheless the different values shall be compared to the official S3 mission SRAL instrumental requirements in order to make a final statement. Once they are gathered, the calibration performance check versus requirements will be made, and warnings will be raised accordingly.

2.5 SRAL Dedicated Investigations

This chapter is devoted to the investigations derived from observations along the mission. The on-going investigations results will be updated in each new version of the report; solved issues will be dismissed from the report.

- The flagging of some L1b CAL2 parameters (mean, slope and standard deviation over the slope) seems to be reversed. This issue is not impacting the quality of the science data. An investigation is ongoing by the S3-MPC team. The cause could be related to the use of different units in the variables checking. Also the impact of a low absolute error in the final relative error computation is to be addressed. Updated nominal and redundant characterization ADFs are to be delivered by the end of February 2018.
3 Calibratation with Transponder

isardSAT has processed the TRP data from a list of L1A products. The L1A from 2016 were reprocessed while the rest of L1A products are official products from PDGS centres.

The range bias results are of the order of millimetres. The datation bias is of the order of hundreds of microseconds.

Missing L2 product for cycle 5 will be available with next reprocessing. The passes on cycles 13 and 21 (2017/08/08) are not considered because the transponder was not switched on due to extreme climate conditions.

Table 3-1 and Figure 3-1 to Figure 3-4 present the results from the TRP passes processing. The range bias is computed as measured minus theoretical. The results show a positive measured range, 7.76 mm larger than expected (elevation 7.76 mm shorter than expected), and a datation bias of -163.80 microseconds, both extracted from the minimisation of the RMS between theoretical and measured series, and from the stack misalignment estimation. They also show a ~0.77 mm stack noise.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Date</th>
<th>Range bias [mm]</th>
<th>Datation bias [microseconds]</th>
<th>Alignment [mm/beam]</th>
<th>Noise [mm]</th>
<th>IPF-SR-1 Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2016/04/09</td>
<td>2.53</td>
<td>-140.07</td>
<td>-0.08</td>
<td>0.35</td>
<td>06.11</td>
</tr>
<tr>
<td>4</td>
<td>2016/05/06</td>
<td>18.77</td>
<td>-114.60</td>
<td>-0.07</td>
<td>0.36</td>
<td>06.11</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2016/06/29</td>
<td>0.83</td>
<td>-152.81</td>
<td>-0.07</td>
<td>0.93</td>
<td>06.11</td>
</tr>
<tr>
<td>7</td>
<td>2016/07/26</td>
<td>-2.68</td>
<td>-152.81</td>
<td>-0.08</td>
<td>0.99</td>
<td>06.12</td>
</tr>
<tr>
<td>8</td>
<td>2016/08/22</td>
<td>-0.20</td>
<td>-127.34</td>
<td>-0.10</td>
<td>0.78</td>
<td>06.12</td>
</tr>
<tr>
<td>9</td>
<td>2016/09/18</td>
<td>1.24</td>
<td>-216.48</td>
<td>-0.13</td>
<td>0.73</td>
<td>06.12</td>
</tr>
<tr>
<td>10</td>
<td>2016/10/15</td>
<td>8.64</td>
<td>-178.27</td>
<td>-0.12</td>
<td>0.61</td>
<td>06.12</td>
</tr>
<tr>
<td>11</td>
<td>2016/11/11</td>
<td>19.90</td>
<td>-140.07</td>
<td>-0.09</td>
<td>0.82</td>
<td>06.12</td>
</tr>
<tr>
<td>12</td>
<td>2016/12/08</td>
<td>22.30</td>
<td>-127.34</td>
<td>-0.08</td>
<td>0.77</td>
<td>06.12</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2017/01/31</td>
<td>26.01</td>
<td>-140.07</td>
<td>-0.09</td>
<td>0.73</td>
<td>06.11</td>
</tr>
<tr>
<td>15</td>
<td>2017/02/27</td>
<td>2.47</td>
<td>-152.81</td>
<td>-0.10</td>
<td>0.85</td>
<td>06.11</td>
</tr>
<tr>
<td>16</td>
<td>2017/03/26</td>
<td>-0.09</td>
<td>-216.48</td>
<td>-0.14</td>
<td>0.78</td>
<td>06.11</td>
</tr>
<tr>
<td>17</td>
<td>2017/04/22</td>
<td>12.75</td>
<td>-191.01</td>
<td>-0.12</td>
<td>0.40</td>
<td>06.11</td>
</tr>
<tr>
<td>18</td>
<td>2017/05/19</td>
<td>28.34</td>
<td>-127.34</td>
<td>-0.06</td>
<td>1.10</td>
<td>06.11</td>
</tr>
<tr>
<td>19</td>
<td>2017/06/15</td>
<td>-5.11</td>
<td>-203.74</td>
<td>-0.10</td>
<td>1.22</td>
<td>06.11</td>
</tr>
<tr>
<td>20</td>
<td>2017/07/12</td>
<td>-16.79</td>
<td>-127.34</td>
<td>-0.10</td>
<td>0.70</td>
<td>06.11</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2017/09/04</td>
<td>18.61</td>
<td>-178.27</td>
<td>-0.12</td>
<td>0.72</td>
<td>06.11</td>
</tr>
<tr>
<td>23</td>
<td>2017/10/01</td>
<td>11.39</td>
<td>-152.81</td>
<td>-0.10</td>
<td>0.72</td>
<td>06.11</td>
</tr>
<tr>
<td>24</td>
<td>2017/10/28</td>
<td>0.31</td>
<td>-229.21</td>
<td>-0.15</td>
<td>0.92</td>
<td>06.11</td>
</tr>
<tr>
<td>25</td>
<td>2017/11/24</td>
<td>15.63</td>
<td>-203.74</td>
<td>-0.15</td>
<td>0.83</td>
<td>06.11</td>
</tr>
<tr>
<td>26</td>
<td>2017/12/21</td>
<td>-2.65</td>
<td>-127.34</td>
<td>-0.06</td>
<td>0.79</td>
<td>6.11</td>
</tr>
<tr>
<td>27</td>
<td>2018/01/17</td>
<td>8.41</td>
<td>-203.74</td>
<td>-0.14</td>
<td>0.92</td>
<td>6.11</td>
</tr>
</tbody>
</table>

Mean: 7.76, -163.80, -0.10, 0.77
Standard Deviation: 11.48, 35.87, 0.03, 0.22

Table 3-1. Results of TRP passes processing
Regarding the geophysical corrections, the ionospheric and wet/dry tropospheric corrections were extracted from the transponder auxiliary files provided by the MPC team.

Then, the solid earth, geocentric tide and ocean loading corrections are selected from the L2 products. A table with the Geophysical corrections used is shown in Table 3-2. The TRP internal delay is 4.954 meters.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Date</th>
<th>Dry Tropo [m]</th>
<th>Wet Tropo [m]</th>
<th>Iono [m]</th>
<th>Solid Earth [m]</th>
<th>Geocentric Tide [m]</th>
<th>Ocean Loading [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2016/04/09</td>
<td>-2.02600</td>
<td>-0.08710</td>
<td>-0.02418</td>
<td>-0.12970</td>
<td>0.00330</td>
<td>0.00310</td>
</tr>
<tr>
<td>4</td>
<td>2016/05/06</td>
<td>-2.04220</td>
<td>-0.07140</td>
<td>-0.03489</td>
<td>-0.04410</td>
<td>0.00280</td>
<td>0.01020</td>
</tr>
<tr>
<td>6</td>
<td>2016/06/29</td>
<td>-2.05184</td>
<td>-0.11006</td>
<td>-0.02995</td>
<td>-0.00030</td>
<td>-0.00060</td>
<td>0.00250</td>
</tr>
<tr>
<td>7</td>
<td>2016/07/26</td>
<td>-2.04933</td>
<td>-0.07117</td>
<td>-0.02432</td>
<td>-0.08820</td>
<td>-0.00260</td>
<td>-0.00200</td>
</tr>
<tr>
<td>8</td>
<td>2016/08/22</td>
<td>-2.05343</td>
<td>-0.07527</td>
<td>-0.02265</td>
<td>-0.12310</td>
<td>-0.00380</td>
<td>-0.00140</td>
</tr>
<tr>
<td>9</td>
<td>2016/09/18</td>
<td>-2.05799</td>
<td>-0.12541</td>
<td>-0.02411</td>
<td>-0.03270</td>
<td>-0.00470</td>
<td>0.00360</td>
</tr>
<tr>
<td>10</td>
<td>2016/10/15</td>
<td>-2.06529</td>
<td>-0.06351</td>
<td>-0.01800</td>
<td>0.13620</td>
<td>-0.00500</td>
<td>0.00680</td>
</tr>
<tr>
<td>11</td>
<td>2016/11/11</td>
<td>-2.06734</td>
<td>-0.07036</td>
<td>-0.01639</td>
<td>0.19500</td>
<td>-0.00380</td>
<td>0.00310</td>
</tr>
<tr>
<td>12</td>
<td>2016/12/08</td>
<td>-2.07943</td>
<td>-0.01087</td>
<td>-0.01453</td>
<td>0.09160</td>
<td>-0.00250</td>
<td>-0.00300</td>
</tr>
<tr>
<td>14</td>
<td>2017/01/31</td>
<td>-2.06552</td>
<td>-0.01138</td>
<td>-0.01913</td>
<td>-0.08110</td>
<td>0.00020</td>
<td>-0.00220</td>
</tr>
<tr>
<td>15</td>
<td>2017/02/27</td>
<td>-2.05001</td>
<td>-0.09089</td>
<td>-0.01818</td>
<td>-0.00790</td>
<td>0.00140</td>
<td>0.00310</td>
</tr>
<tr>
<td>16</td>
<td>2017/03/26</td>
<td>-2.05115</td>
<td>-0.06735</td>
<td>-0.01618</td>
<td>0.11520</td>
<td>0.00200</td>
<td>0.00520</td>
</tr>
<tr>
<td>17</td>
<td>2017/04/22</td>
<td>-2.04841</td>
<td>-0.04449</td>
<td>-0.02672</td>
<td>0.13670</td>
<td>0.00190</td>
<td>0.00160</td>
</tr>
<tr>
<td>18</td>
<td>2017/05/19</td>
<td>-2.05320</td>
<td>-0.03910</td>
<td>-0.03295</td>
<td>0.03340</td>
<td>0.00110</td>
<td>-0.00260</td>
</tr>
<tr>
<td>19</td>
<td>2017/06/15</td>
<td>-2.05731</td>
<td>-0.07789</td>
<td>-0.02817</td>
<td>-0.08180</td>
<td>-0.00010</td>
<td>-0.00230</td>
</tr>
<tr>
<td>20</td>
<td>2017/07/12</td>
<td>-2.05252</td>
<td>-0.08288</td>
<td>-0.02232</td>
<td>-0.11870</td>
<td>-0.00220</td>
<td>0.00190</td>
</tr>
<tr>
<td>22</td>
<td>2017/09/04</td>
<td>-2.05777</td>
<td>-0.00013</td>
<td>-0.02142</td>
<td>0.02520</td>
<td>-0.00470</td>
<td>0.00900</td>
</tr>
<tr>
<td>23</td>
<td>2017/10/01</td>
<td>-2.06119</td>
<td>-0.06361</td>
<td>-0.02128</td>
<td>0.05060</td>
<td>-0.00500</td>
<td>0.00510</td>
</tr>
<tr>
<td>24</td>
<td>2017/10/28</td>
<td>-2.03975</td>
<td>-0.12175</td>
<td>-0.01537</td>
<td>0.00120</td>
<td>-0.00440</td>
<td>-0.00040</td>
</tr>
<tr>
<td>25</td>
<td>2017/11/24</td>
<td>-2.06119</td>
<td>-0.06461</td>
<td>-0.01486</td>
<td>-0.03940</td>
<td>-0.00340</td>
<td>-0.00270</td>
</tr>
<tr>
<td>26</td>
<td>21/12/2017</td>
<td>-2.05275</td>
<td>-0.12315</td>
<td>-0.01603</td>
<td>-0.00760</td>
<td>-0.00150</td>
<td>-0.00150</td>
</tr>
<tr>
<td>27</td>
<td>2018/01/17</td>
<td>-2.03678</td>
<td>-0.06282</td>
<td>-0.01587</td>
<td>0.08640</td>
<td>-0.00200</td>
<td>0.00100</td>
</tr>
</tbody>
</table>

Table 3-2. Geophysical Corrections of TRP passes processing
Transponder processing results.

![Graph of Range Bias Results](image)

Figure 3-1. Range Bias Results.

![Graph of Datation Bias Results](image)

Figure 3-2. Datation Bias Results.
Transponder processing. Stack analysis.

Figure 3-3. Alignment Results.

Figure 3-4. Stack Noise Results.
No special SRAL events have been observed during this cycle.
5 Appendix A

Other reports related to the STM mission are:

- S3-A MWR Cyclic Performance Report, Cycle No. 027 (ref. S3MPC.CLS.PR.05-027)
- S3-A Ocean Validation Cyclic Performance Report, Cycle No. 027 (ref. S3MPC.CLS.PR.06-027)
- S3-A Winds and Waves Cyclic Performance Report, Cycle No. 027 (ref. S3MPC.ECM.PR.07-027)
- S3-A Land and Sea Ice Cyclic Performance Report, Cycle No. 027 (ref. S3MPC.UCL.PR.08-027)

All Cyclic Performance Reports are available on MPC pages in Sentinel Online website, at: https://sentinel.esa.int

End of document