

IDEAS-QAHE®

IDEAS-QA4EO Service Cal/Val Workshop #4 1st March 2023, Potsdam

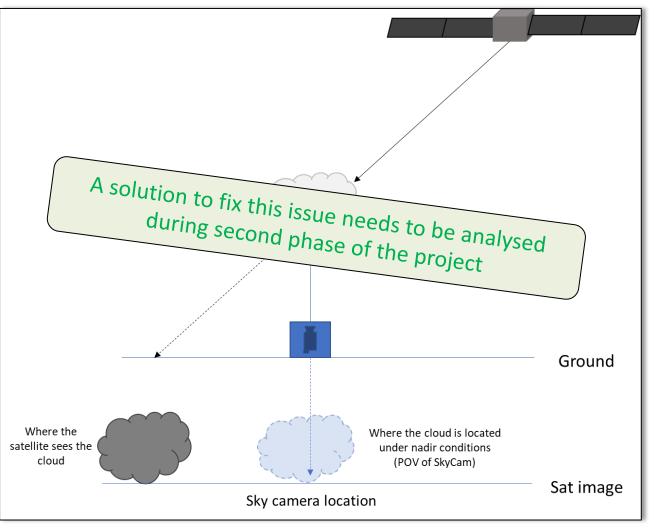
Ground-based sky-camera observations for cloud-mask validation in support to CMIX

Add-on: Status report CMIX-II

Jan Wevers (Brockmann Consult GmbH)

Project Objective – Phase 2

- Develop a global source for independent cloud mask validation of any remote sensing sensor operating in the visual domain (with focus on CMIX).
- Technical tasks of phase 2 part 1:
 - finding a solution for geometry issues,
 - research on proper rectifying algorithms to correct for lens distortion,
 - more research on SC image classification to train a better classifier,
 - find a better solution to treat sun interferences in the SC images,
 - and to test or even develop an algorithm for stereo SC based cloud height estimation, and
 - finally to compare SC based cloud bottom heights with RAP cloud bottom heights.
- Technical tasks of phase 2 part 2:
 - transferring the current mixture of cloud- and local desktop-based system to a completely cloud-based system.
 - This task will prepare for a sufficient way of processing SC and satellite data and the final data provision to the users.
 - It also should provide a good solution for the users to bring their own data for validation.



Project Objective – Phase 2

- Management tasks phase 2
 - fostering the good engagement with University of Maryland, to keep up with their developments and to benefit from knowledge exchange.
 - Outreach and communication and this phase should focus on sharing the status of the developments at relevant events and conferences.

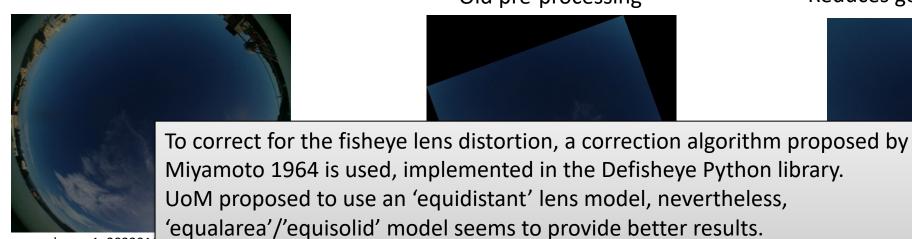
Geometry issues

- The images show that the cloud in the center of SC2 (Fermi) is located northeast of SC2 in the S2 L2A image.
- While the same cloud is located southwest of the center of SC1 (Marconi) and south/over SC1 in the S2 L2A product.
- The cause for this mismatch can be explained by the viewing differences of the three instruments and the location of the cloud above ground.
- The S2 L2A data have been acquired off-nadir with a VAA mean of 130.28053 and a VZA mean of 3.3807745 (purple arrow viewing direction of S2 MSI).
- The parallax between true nadir and the actual S2 location cause the cloud to be projected in north-western direction onto the ground

Geometry issues

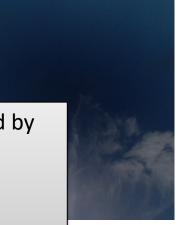
SC 1 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous
Annual results 2022
Sky Camera 1

	Class	Clear	Cloud	Sum	U A	E
- 550	CLEAR	250	22	272	91.9	8.1
-2 LFR	CLOUD	36	87	123	70.7	29.3
OLCI L2	Sum	286	109	395		
	ΡA	87.4	79.8		OA:	85.32
	Е	12.6	20.2		BOA:	83.6


Scotts Pi: 0.646 Krippendorfs alpha: 0.646 Cohens kappa: 0.646 SC 1 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous Annual results 2022 - OZA < 30 Sky Camera 1

	Class	Clear	Cloud	Sum	U A	E
	CLEAR	146	13	159	91.8	8.2
-2 LFR	CLOUD	17	51	68	75.0	25.0
OLCI L2	Sum	163	64	227		
	ΡA	89.6	79.7		OA:	86.78
	Е	10.4	20.3		BOA:	84.65

Scotts Pi: 0.679 Krippendorfs alpha: 0.68 Cohens kappa: 0.679



rome-skycam1_202301

New pre-processing **Reduces geometric distortion**

rotate, subset

fullframe. Miyamoto, Kenrō. "Fish Eye Lens." Journal of the Optical Society of America 54 (1964): 1060-1061.

rome-skycam1_20230126T090902_0p05.jpeg

The format of the camera used for correction is circular, compared to

Subset, flip, rotate

De-fisheye, flip, rotate, subset

Sky Camera Sites

- New site location in Valencia, Spain has been added
 - Data is transferred to Brockmann Consult server
 - Development of new classifier on-going (RF, NN, gradient boosting)
- Overall, currently six sites exist
 - GSFC, Greenbelt, Maryland, USA
 - Wisconsin, USA
 - Sapienza University, Rome, Italy
 - Valencia University, Valencia, Spain
 - Sao Paulo University, Sao Paulo, Brazil
 - Antarctica

Sun interference & Classifier

• Sun interference leads to false classification (clear as cloud)

Sun interference & Classifier

- Additional training data for the Rome site was collected to make classifier mor robust to seasonal variations -> training on-going
- New training data was collected for the Valencia site -> training on-going
- Three different classifiers will be tested against each other:
 - Random Forest (current classifier)
 - Neural Network
 - Gradient boosting

Cloud base height estimation – COD estimates

- Cloud base height: Still under development at University of Maryland (UoM)
- UoM is currently developing a COD algorithm for the SC images.
 - Development is done for CMIX-II
 - Valuable information for further validation of satellite-based cloud mask algorithms
 - Shall be finalized within Q1 2023

Cloud based solution for processing

- Two potential solution have been analysed
 - QA4EO Cal Val platform
 - EuroDataCube Service
- QA4EO CalVal platform
 - Data availability:
 - S2 rolling archive 1PB older data get lost
 - Landsat: Only L8 and prior, no L9
 - Sentinel-3: Full archive
 - Usability:
 - All routines have to be developed starting with the extraction of data; no predefined modules or API
 - Access through X2Go quite challenging; Jupyter notebook might not be the best solution for operational validation tasks
 - Bring your own data (BYOD):
 - Limited to upload to the VM
 - For the access of other cloud stored data routines have to be developed -> By whom? The user?

Cloud based solution for processing

- Two potential solution have been analysed ۲
 - QA4EO Cal Val platform
 - EuroDataCube Ser
- EuroDataCube Service seems to be the better choice EuroDataCube Se ٠
 - Data availabilit
 - S2: full arch
 - Landsat: full arcmve
 - Sentinel-3: Only L1b
 - Usability:
 - Xcube service: open source Python toolkit for generating, processing, and visualising data cubes. It provides a growing ecosystem of compatible modules supporting users in all steps of data cube generation and handling, while at the same time ensuring maximum compatibility and seamless integration into existing data science workflows by relying on Python's well-established and open source technology stack including packages like xarray, dask, geopandas, and zarr.
 - Bring your own data (BYOD):
 - Access to your own data stored in S3 buckets. Does not require any further data transfer. Methods for S3 data handling already available.

Less work for integration –

– More user friendly –

Cloud based solution for processing

- Proposal for a new EDC Service is currently under development
- One of the biggest advantages of using the EDC is that users can get funding from ESA NoR for using any EDC service.

Exchange with UoM and outreach

• Through the joint lead of CMIX-II the Brockmann Consult team is in constant contact and good knowledge exchange with UoM

- The sky camera approach has been presented at international events and working groups
 - Living Planet Symposium, S3QWG, S3VT, OPT-MPC OLCI/SYN ESL & classification working group

Usage of the SC approach outside of QA4EO

Sky Camera validation over Rome Using 2021 LFR data

PixBox validation 2021 using 2018 data over land surfaces

SC 1 automatic classification vs	OLCI L2 LFR Cloud	& Ambiguous & Margin
----------------------------------	-------------------	----------------------

	Sky Camera 1					
	Class	Clear	Cloud	Sum	U A	E
	CLEAR	136	7	143	95.1	4.9
OLCI L2 LFR	CLOUD	53	86	139	61.9	38.1
OLCI I	Sum	189	93	282		
	ΡA	72.0	92.5		OA:	78.72
	E	28.0	7.5		BOA:	82.25

Scotts Pi: 0.56 Krippendorfs alpha: 0.561 Cohens kappa: 0.572

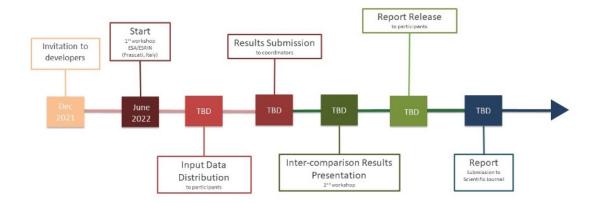
	OLCI A+B FR IdePix cloud val land surfaces					
			In-Situ Da	atabase		
	Class	Clear	Cloud	Sum	U A	E
×	CLEAR	3442	443	3885	88.6	11.4
R IdePi	CLOUD	1039	3183	4222	75.4	24.6
OLCI FR IdePix	Sum	4481	3626	8107		
0	ΡA	76.8	87.8		OA:	81.72
	E	23.2	12.2		BOA:	82.3

Scotts Pi: 0.634 Krippendorfs alpha: 0.634 Cohens kappa: 0.635

SC 1 autom. classif. vs. OLCI L2 LFR Cloud & Ambiguous
Annual results 2022
Sky Camera 1

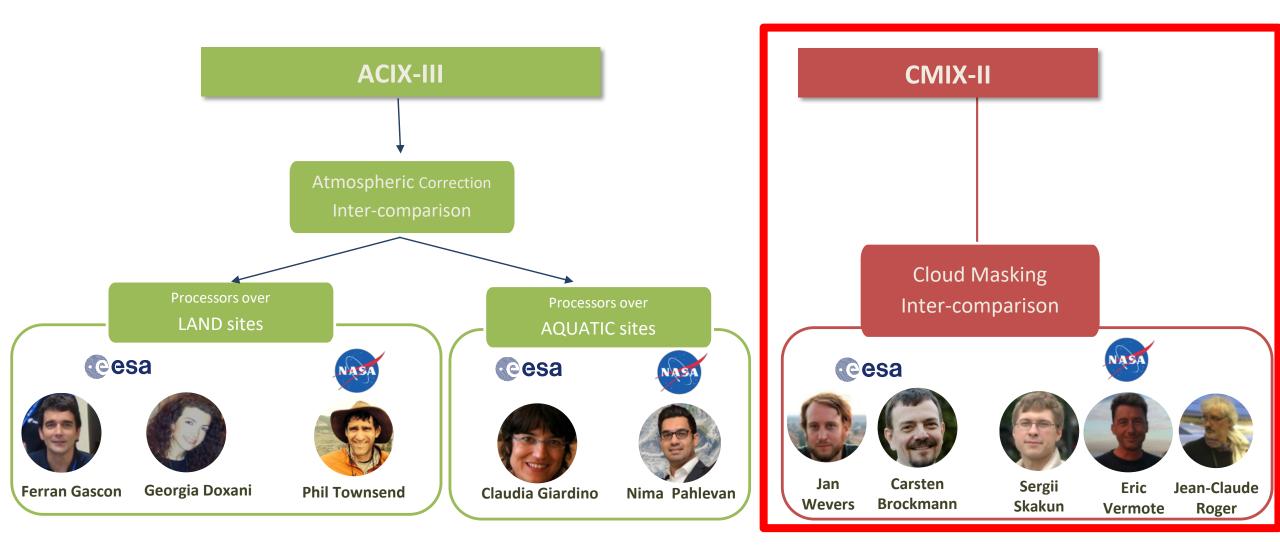
	Class	Clear	Cloud	Sum	U A	Е
	CLEAR	250	22	272	91.9	8.1
OLCI L2 LFR	CLOUD	36	87	123	70.7	29.3
OLCI I	Sum	286	109	395		
	ΡA	87.4	79.8		OA:	85.32
	Е	12.6	20.2		BOA:	83.6

Scotts Pi: 0.646 Krippendorfs alpha: 0.646 Cohens kappa: 0.646



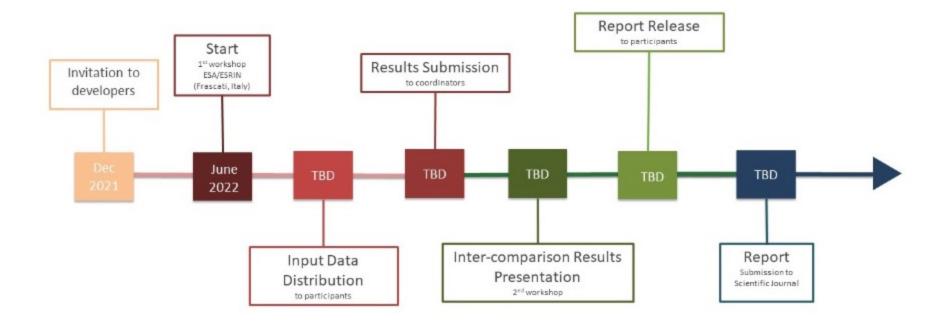
IDEAS-QAHE®

Status report CMIX-II


Cloud Mask Inter-comparison eXercise - II

Jan Wevers (Brockmann Consult GmbH) Sergii Skakun Georgia Doxani (University of Maryland) (ESA)

CMIX-II organization



IDEAS-QAHE®

CMIX II - Objective

- To inter-compare a set of cloud detection algorithms for space-borne high-spatial resolution (10-30 m) multiand hyperspectral optical sensors
- Focus on Sentinel-2, Landsat 8/9 and PRISMA data

CMIX-II initial schedule

Results from first workshop

- <u>Clear definition of clouds</u> in reference datasets required; more physical based definition
 - For the two main datasets COD estimates will be provided with cloud classification for better understanding of singe classes (e.g. thin clouds, medium thick clouds, totally opaque clouds)
- Compared to the initial schedule a <u>first round with a test dataset</u> (TDS) of all reference datasets is planned, to ensure <u>everbody agrees with</u> <u>the datasets</u>.
- Accuracy comparison of <u>cloud shadows</u> is as important as clouds

Major phases

- Definition of the inter-comparison protocol and reference datasets
 - June 2022: This Workshop
- Phase 1 TDS exercise
 - Provision of reference datasets samples
 - Application of the CM processors
 - Initial analysis of the results
 - Feedback from participants
- Phase 2 Main exercise
 - Preparation of the reference datasets
 - Preparation of complete datasets: TBD
 - Publication of datasets after analysis: TBD
 - Application of the CM processors

Major phases

- Results Analysis Report (Internally)
 - May 2023 -> November 2023
- 2nd Workshop of CEOS-WGCV ACIX III CMIX II
 - Approx. June 2023 @ ESA or NASA -> December 2023

Participants

- Number of participants has neraly <u>doubled</u> (CMIX: 9 participants) and has now finally reached <u>17</u>.
- All of the listed participants have already processed the first results of the TDS or at least gave feedback.

No	Name	Organization	Algorithm	
	Sergii Skakun	NASA GSFC/UMD		
1	Eric Vermote	NASA GSFC	LaSRC	
	Jean-Claude Roger	NASA GSFC		
2	Alistair Francis	ESA/ESRIN	SEnSel	
3	Feng Yin University College London C		CNN_cloud_shadow_mask	
4	David Frantz	Trier University	FORCE	
5	Béatrice Berthelot	MAGELLIUM	MAGCMA	
6	Jorrit Scholze	Brockmann Consult GmbH	IdePix	
7	Luis Gómez-Chova	University of Valencia	UVDeepCloud	
8	Kaupo Voormansik	KappaZeta Ltd	KappaMask	
•	Tetiana Shtym	καρμαζεία εία		
9	Yaokai Liu	CAS.CHINA	Hikerliu	
10	Jerome Louis	Telespazio France	Sen2Cor	
11	Christopher Brown	Google, LLC	CloudScore+	
	Valerie Pasquarella			
12	Hervé Poilvé	Airbus Geo-Intelligence Toulouse (Airbus DS)	Overland	
13	Pat Scaramuzza	USGS	Cfmask	
	Bringfried Pflug, Avi			
14	Avi Pertiwi	DLR	PACO	
	Raquel de los Reyes			
15	Christophe Lerebourg	ACRI	BrightEarth	
16	Hankui Zhang	South Dakota State Univ	LANA	
17	Zhe Zhu Shi Qiu	University of Connecticut	Fmask 4.6	

Datasets

- Reference / validation datasets
 - Sky Camera Network
 - PixBox (expert pixel collection) dataset
 - General collection
 - Potentially: Cloud border collection
 - Multi-temporal (time series) critical case collection (identifying potential systematic errors)
 - Collaborative dataset using IRIS (active learning): classification of subsets by the participants

THANK YOU FOR THE ATTENTION

