GRASP updates:

aerosol- surface – gases joint retrievals

Oleg Dubovik, Tatsiana Lapionak, Benjamin Torres and Yevgeny Derimian

- Laboratoire d'Optique Atmosphérique, CNRS/Université Lille, Villeneuve d'Ascq, France.

Marcos Herreras-Giralda, Masahiro Momoi, Anton Lopatin, Cheng Chen, Yana Karol

- GRASP-SAS, Remote sensing developments, Villeneuve d'Ascq, France.

Rene Preusker and Jurgen Fischer - SpectralEarth, Berlin, Germany

Remote Sensing of Surface Atmosphere System and inclusion of gases into consideration

<u>Objective</u>: Developing methodologies for validation and improving of aerosol and surface reflectance (BRDF and BPDF) modeling in remote sensing

TASKS:

- ✓ Joint retrieval aerosol and surface reflectance; WP-2130
- ✓ Optimizing aerosol and surface reflectance models;
- ✓ Inclusion of gas parameters in the GRASP retrieval WPs-2131-2132

- Accurate representation of phase matrix elements in RT requires large number of the expansion terms
- The sharper features in *P_{ii}* the larger number of terms required
- The effects of sharp features in P_{ii} the are mostly important in first orders of scattering

GRASP

P3-IMS - Improved **M**ultiple and **S**ingle scattering (IMS) by **3rd** order multiple scattering correction of the forward lobe

Optimizing RT in situations with sharp features: *solar aureole, glory, and Sun-glint regions*

IMS truncation & correction methods

Delta-M algorithm, Wiscombe 1977: $P = P^{\#} f + (1 - f) P^{*}$

Nakajima and Tanaka, 1988:

1-st and 2-nd order scattering correction for P11

Waquet-Herman 2010:

Momoi et al. 2022a-b:

1-st, 2-nd and 3-rd corrections for P11, P12, P22 and P33 (no interactions between truncated fraction and rest of calculations)

1-st, 2-nd and 3-rd correction for P11,..., P33 and 1-st, 2-nd for glint (full interactions between truncated fraction and rest of calculations)

The sharper features in P_{ii} the larger number of terms required

for glint too...

What about sun-glint over ocean surface?

https://www.esa.int/

Sun-glint correction using PⁿIMS method

✤ The sharper features in P_{ii} the larger number of terms required

The correction is helpful for glint too...

PⁿIMS w/ sun-glint correction

Waquet-Herman PⁿIMS-method

Integration of spectrometric observations into GRASP synergetic retrievals

Marcos Herreras-Giralda¹, Oleg Dubovik², Rene Preusker³, Tatsiana Lapionak², Jurgen Fischer³ and David Fuertes¹.

(1) GRASP-SAS, Remote sensing developments, Villeneuve d'Ascq, France.
(2) Laboratoire d'Optique Atmosphérique, CNRS/Université Lille, Villeneuve d'Ascq, France.
(3) Institute for Space Science, Free University of Berlin, Berlin, Germany

The Concept

- GRASP was orientated to aerosol and surface retrievals which are **spectrally smooth**
- Missing information:
 - Physical: Gas absorption lines
 - Instrument related: Filter shape
 - Non square shape
 - Unknown or variable channel center (Ex.: smile effect)
- Compatible, intuitive and complementary with previous GRASP applications
- Following GRASP generalized philosophy non of the new developments are instrument related and can be applied to any instrument/channel with spectrometric characteristics

The Scheme

The main GRASP assumption is the constant vertical shape of gas absorption profiles

Any combination of channels with different spectral widths or filter shapes is allowed:

Applications

• The integration of spectrometric measurements in GRASP enables the simultaneous and combined retrieval of aerosol properties and gas concentrations:

PSR direct sun measurements + **AERONET** -> Aerosol properties + NO₂ + less assumptions

• An accurate description of gas absorption lines can improve aerosol retrieval in certain conditions

AERONET + **Pandora NO**₂ concentration -> 0.02 SSA difference at 440 nm for NO₂ > 0.9 DU

• Accurately accounting for aerosol and gas absorption properties brings additional sources of information to the GRASP retrieval:

Aerosol Height retrieval (ALH) from OLCI A-band -> surface BRDF + Aerosol + ALH

<u> AERONET + Pandora NO2</u>

The usual AERONET NO₂ climatology just providing total column NO₂ has been replace by Pandora NO₂ concentration values from collocated instruments in two Rome sites. Kbin code (Doppler et al., 2014) has been used to perform accurate gas absorption calculations.

GRASP

ROME SAP

Y=0.991X-0.000

R=0.990 RMSE=0.016

1.2

AOD 440 nm, MBE = -0.0021 (-1.0)

AOD at 440 nm does not seem to be affected by changes in NO_2 concentration. No matter the NO_2 conditions AOD does not experiment any significant bias or RMSE reduction.

AERONET + Pandora NO2

However, the Single Scattering Albedo (SSA) at 440 nm presents a consistent bias of around 0.02 for both stations (Rome Tor Vergata and Rome La Sapienza) in conditions of elevated concentrations of NO2.

ALH OLCI A-band retrieval

ALH OLCI A-band retrieval

Sensitivity to ALH in O₂ A band

In conditions of equal source function ("same aerosol load") changes in ALH lead to changes in transmissivity (different optical path) which is translated in different radiance values.

 $S_1 = S_2$ $T_1 > T_2$

Rayleigh and mainly **O2 A band channels provide sensitivity to** changes in **Aerosol Layer Height**.

T₁

 T_2

 $\mathbf{S}(\tau,\mu,\varphi) = \frac{\omega(\tau)}{4\pi} \mathbf{P}(\tau,\mu,\varphi,\mu_0,\varphi_0) \mathbf{E}_0 \exp\left(\frac{\tau}{\mu_0}\right)$

 $+\frac{\omega(\tau)}{4\pi}\int_{0}^{2\pi}\int_{-1}^{+1}\mathbf{P}(\tau,\mu,\varphi,\mu',\varphi')$

S₁

S₁

ALH OLCI A-band retrieval

Synthetic Retrieval tests: Results

Dispersion (RMSE) and bias (MBE) are inversely proportional to ALH.

Conclusions

- •Spectrometric measurements and accurate gas absorption features have been implemented in GRASP for a wide range of applications: ground-based, satellite, shortwave and longwave channels, non-fixed filter shapes...
- •Combined retrieval of gas concentrations and aerosol properties has been performed for multiple configurations.
- •The addition of gas absorption information **improves aerosol** characterization:
 - AERONET SSA at 440 nm
 - ALH retrieval from O₂ A-band

Future perspectives

- •Higher optimization for very exigent applications.
 - Improving filter representation -> center channel retrieval
- •New application to other satellite platforms

- GRASP/IASI first prototype retrieval
- •More ground-base combined retrieval of aerosol and gas concentrations
 - AERONET aerosol and Water vapor combined retrieval (940 nm channel)
 - Pandora (Luftblick)
 - PFR (PMOD)
 - PSR (PMOD)

https://loa.univ-lille.fr/wslille2023

Workshop Lille 2023 & GRASP Summer School

Workshop on recent advancements in remote sensing and modeling of aerosols, clouds and surfaces & GRASP ACE Summer School

May 22 - 26, 2023 University of Lille, France

PROGRAMME Capture d'écran

SPEAKERS LIST Get to know our Speakers

SUBMIT ABSTRACT The deadline by March 15th

REGISTER ONLINE Opening in March 2023

