

Pandonia Improved Uncertainty Estimation

Ilias Bougoudis, Leonie Haunold, Manuel Gebetsberger, Martin Tiefengraber IDEAS-QA4EO Cal/Val Workshop#4, 28.02.23 - 02.03.23 - Potsdam (Germany)

Outlook

Goals if this WP

- 1. Determine the common (=systematic) uncertainty of total O_3 when a literature reference is used.
- 2. Comparison of retrieved O_3 effective temperature and column with external datasets
 - MERRA-2 assimilations
 - \circ **0**₃ sondes (extrapolated with MERRA-2)
 - Brewer V2 data
- 3. First attempt to compare uncertainties for total O_3 based on
 - Pandora using upcoming processor.
 - Brewer using V2 data.

O_3 Common Uncertainty Determination

PGN

Currently **no common uncertainty** for total O_3 given when **literature reference** is used!

```
Total \mathbf{0}_3 based on literature reference uses \mathbf{0}_3 temperature climatology. 
\rightarrow \boldsymbol{03}_{lit}
```

```
Total \mathbf{0}_3 based on measured reference fits \mathbf{0}_3 temperature. 
\rightarrow \mathbf{03}_{meas}
```

Assumption:

Difference between $O3_{lit}$ and $O3_{meas}$ is driven by temperature difference. \rightarrow good estimate for common uncertainty.

We ignore station specific differences, like

- bias in O₃ temperature climatology
- imperfect calibration of O_3 and O_3T

O_3 Common Uncertainty Determination

Common uncertainty to be evaluated as the standard deviation of the residuals of individual stations fit.

O₃ Common Uncertainty Determination

Median values (standard deviation) among instrument specific evaluation:

Offset [mmol/m2]	0 ₃ T effect [mmol/K]	Common uncertainty [mmol/m2]
-0.19 (+/- 1.5)	0.35 (+/- 0.09)	0.43 (+/- 0.16)

Comparisons of retrieved O_3 temperature with External Datasets

- MERRA-2 (Modern-Era Retrospective analysis for Research and Applications), is a NASA atmospheric reanalysis, based on the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system
- O₃ sondes are lightweight, balloon-borne instruments that are mated to a conventional meteorological radiosonde. It transmits O₃ related data as the balloon ascents.
 O₃ sondes were extrapolated with MERRA-2 data
- EUBREWNET is a coherent network of European Brewer Spectrophotometer monitoring stations in order to harmonise operations and develop approaches, practices and protocols to achieve consistency in quality control, quality assurance and coordinated operations.
 - \circ One co-located station used (Davos)
- Results will be shown per station; All Pandora data are quality and AMF filtered

Comparisons with External Datasets - Davos

Comparisons with External Datasets - Rome

Comparisons with External Datasets - Rome

Comparisons with External Datasets - Tsukuba

Comparisons with External Datasets - Tsukuba

Comparisons with External Datasets - Davos

	Correlation	RMSE	Slope
Davos	0.98	0.63	1.08
Rome	0.84	0.88	0.95
Tsukuba	0.90	0.74	0.73

Uncertainty components

combined (total)

Usually highest for high integration times.

systematic (common) correlation length in time = ∞ ... calibration error

Highest for low AMFs (VC=SC/AMF)

mixed (structured)

correlation length between 0 and ∞ ... algorithm error

... cross section (effective) temperature

Highest for highest fitting RMS

$\begin{array}{l} \text{Uncertainty component comparison for total O}_3 \text{ in Davos} \\ \rightarrow \text{first attempt} \\ & \text{Output}_{\text{differentiates}} \end{array}$

Uncertainty component comparison for total $\rm O_3$ in Davos \rightarrow first attempt

What drives the differences?

random

wavelengths: 200 (Pandora) vs 5 (Brewer) Pandora much less noise Brewer considers more than noise (seasonality)?

systematic

Pandora does not yet considers L1 uncertainty

mixed

only for Pandora. For Brewer redistribution to random and systematic?

Uncertainty component comparison for total $\rm O_3$ in Davos \rightarrow first attempt

Suggested WP extension

- Include the newly developed version **1.9 uncertainty** in the PGN instrument calibration procedures in order to prepare the move from version 1.8 to 1.9 as the official PGN retrieval software.
- With the exception of O₃, there is hardly any external (non PGN) direct sun data available for uncertainty comparison → extent the validation of PGN data uncertainties using the results of collocated PGN instruments using a statistical framework using Generalized Additive Regression Models (GAMs).

Suggested WP extension

Uncertainty-component-validation using co-located Pandoras and Generalized Additive Models (GAM)

- A) Obtain a shared daily effect among instruments: Evaluate instrument-specific offset to a baseline amount, which describes common (=systematic) uncertainty (~ calibration error)
- B) Correct for offsets

If there are no other error sources the remaining variation around the baseline should be attributed to the independent (=random) uncertainty solely that can be quantified in terms of statistical consistency

Suggested WP extension

PGN

Uncertainty-component-validation using co-located Pandoras and Generalized Additive Models (GAM)

The obtained baseline amount must be randomly distributed within the reported independent uncertainty. This results in uniformly distributed frequencies within equi-distant probability-bins to full-fill statistical consistency.

Correct Uncertainty	-> Uniform	
Low Uncertainty	-> U-shape	
High Uncertainty	-> inverse U-shape	

Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecast from ensemble model integration. J. Climate, 9, 1518–1530 Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711–724

Thank you for your attention!!

Ilias Bougoudis, Leonie Haunold, Manuel Gebetsberger, Martin Tiefengraber IDEAS-QA4EO Cal/Val Workshop#4, 28.02.23 - 02.03.23 -Potsdam (Germany)

