SI-TRACEABLE SYSTEM DEVELOPMENT (WP-2220)

LUNAR IRRADIANCE MEASUREMENTS WITH A PRECISION FILTER RADIOMETER

Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis

Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, PMOD/WRC Saulius Nevas, Peter Schneider, Kerstin Schwind

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

Lunar Precision Filter Radiometers

Filter radiometer with 4 channels in a grid
Lunar version: 675 nm, 412 nm , 500 nm, 862 nm (FWHM: ~5 nm)
Optimized for Irradiance Measurements

- Temperature stabilized photodiodes
- Reference Plane: the precision aperture
- FOV : 1.2° plateau , 0.7° slope angle, homogeneity in plateau > 99.5%
- 22-bit data acquisition system (SACRAM) specifically designed for the PFR.

Lunar-PFR PFR-L-002 has been characterized at PTB, Braunschweig, Germany and provides irradiance measurements with an uncertainty of 0.3% at 412 nm, 500 nm, 675 nm and 862 nm with the framework of 19ENV04 MAPP.

TUnable Lasers In Photometry (TULIP) setup

- ps-OPO system
- Homogenized beam
- Reference detector: 3-element trap detector and equipped with a calibrated aperture, giving an uncertainty better than 0.1 %
- Wavelength scale: LSA
- Fully automated system

Characterization Measurements

- Spectral responsivity (s)
- Reference plane
- PFR Gain

PFR-L Characterization

Relative responsivity of 412 nm channel retrieved from measurements at TULIP and ATLAS setups.

highest discrepancies

Gain uncertainty reduced by a factor of 3

	TULIP	ATLAS	ATLAS				
	2021	2017	2019				
Gain	U=0.3%	U=2.5%	U=1.5%				
Laboratory							
: 0	1.0	0.0	0.0				
1	934.6	-1.8	-0.2				
2	4451.4	-1.9	-0.2				
Lunar: 3	25164.0	-1.8	0.1				

Spectral responsivity uncertainty reduced from 1.5% to 0.3%

	TULIP - 2021	Differences to TULIP ATLAS-2020		
λ (nm)	<i>ട</i> (W/m²)	U (%,k=2)	<i>δ</i> λ (nm)	<i>δs</i> (%)
861.75	12.96	0.26	0.2	-1.4
501.39	9.78	0.25	1.1	0.8
411.95	10.88	0.27	0.8	5.1
675.39	6.80	0.18	0.1	-2.5

pmod wrc

PFR-L Characterisation - Comparison of Calibration Methods

Irradiance Standard vs Monochromatic Irradiance

An irradiance calibration was performed at PTB after the TULIP calibration using 200 W lamps. The 2 calibration methods gave equivalent results, well within their uncertainties.

channel	862 nm	500 nm	412 nm	675 nm
1000 mm	-0.30%	-0.40%	-0.90%	0.30%
1500 mm	-0.10%	0.20%	0.30%	0.20%

PFR-L Characterisation - Stability 2015-2021

Direct Irradiance Calibration Setup

- Reference irradiance source (1000W FEL-type lamp) calibrated at PTB.
- Motorized XYZ linear translators
- Motorized Rotation stages for azimuth and zenith angles.

The gray lines: uncertainty of the lamp calibration.

$$\ln\left(\frac{Ipfr(\lambda)}{I_{RIMO}(\lambda)}\right) + t_{ray}m + t_{O_3}m_{O_3} = -mt_{aod}$$

Successful Langley Example:

	Difference LunarPFR-RIMO TOA Lunar Irradiance			Combined calibration and regression					
	(%)			uncertainty (%, k=2)					
	862 nm	500 nm	412 nm	675 nm	862 nm	500 nm	412 nm	675 nm	Lunar Phase
	7.47	9.47	7.80	10.27	0.33	0.35	0.50	0.29	-47
lua ley /als	7.09	9.16	7.69	10.03	0.33	0.35	0.51	0.28	-33
ang ang rriev	6.46	9.79	7.92	9.91	0.33	0.33	0.37	0.27	-19
La La	6.64	9.97	7.79	10.25	0.33	0.32	0.35	0.27	-6
	6.16	9.22	8.00	10.07	0.35	0.34	0.37	0.29	58
Mean TOA difference (%)	6.76	9.52	7.84	10.10	0.40	0.40	0.47	0.36	
standard deviation (%)	0.52	0.36	0.12	0.15					
Combined expanded uncertainty of TOA Lunar irradiance of PFR (k=2, %)	1.60	1.41	1.27	1.25					
								ρποι	

Mean TOA difference (%)	6.76	9.52	7.84	10.10
Difference WEHRLI -TSIS-1 (%)	1.52	-2.17	-2.24	-0.24

SI- Traceable AOD retrieval for Sun-PFR

"SI-traceable solar irradiance measurements for aerosol optical depth retrieval" 2012, Metrologia (submitted)

- Lunar PFR characterized and can provide lunar irradiance with an expanded relative uncertainty U< 0.5%
- The SI-traceable AOD retrievals for the characterized Sun-PFR and TSIS-1, QASUME-FTS TOA solar spectra provides AOD equivalent to the standard Langley calibration.
- The lunar irradiance phase variation from ROLO/RIMO seems be predicted well with an uncertainty of less 1% (k=2) (within the lunar ± 50° phase).
- It is essential to use lunar reflectivity to use state-of -the-art solar spectra (TSIS-1)

Next steps ...

- Analyze Davos data
- Increase our reference data set.
- Development of a second Lunar-PFR to expand the information to 45(
- Organize field campaigns for solar and lunar measurements

IDEAS-QA4EO

serco

esa

graub Inden Education and Research.

- The lunar irradiance seems to be underestimated by 10%
 - ROLO old relative responsivity of PFR (Tom Stone)
 - RIMO resolution 1 nm, generic relative responsivity
- Differences on the convolved solar spectrum due to responsivity: ~10%

SI-traceable system development (WP-2220) Lunar Irradiance measurements with a PFR

- Spectral responsivity calibration of Solar/Lunar Precision Filter Radiometer and Precision Solar Spectroradiometer traceable to the SI.
- Measurements of solar & Lunar spectral irradiances with PFR and spectral solar irradiance with PSR at PMOD/WRC and retrieval of spectral AOD.
- Field campaign at pristine measurement site for validation of solar & Lunar spectral irradiance measurements from Solar/Lunar PFR. Location will be selected during the first half of the project.

Outputs:

- D.2.2.2-1 Report on the laboratory calibration of PFR and PSR.
- D.2.2.2-2 Dataset of solar & lunar spectral irradiance and AOD from Precision filter radiometer and PSR during the phase 2 period of the project.
- D.2.2.2-3 Dataset of spectral solar/lunar irradiance from field campaign with solar/lunar Precision Filter Radiometer.
- D.2.2.2-4 Report on the field campaign for the validation of solar & lunar spectral irradiance measurements with the Solar/Lunar PFR.

WP1 Task 1.3: Field of view properties A1.3.3: FOV measurements using the MOON

Lunar – PFR-L-109

Filter radiometer with 4 channels in a grid
Interference filters :
Sun version: 368 nm, 412 nm , 500 nm, 862 nm
Lunar version: 675 nm, 412 nm , 500 nm, 862 nm
FWHM: ~5 nm
Optimized for Irradiance Measurements

- Temperature stabilized photodiodes
- Reference Plane: the precision aperture
- FOV : 1.2° plateau , 0.7° slope angle, homogeneity in plateau > 99.5%
- The PFR signal (V) is provided by a 22-bit data acquisition system (SACRAM) specifically designed for the PFR.

• SACRAM Linearity checked against a reference source calibrated at Metas

