MULTITEMPORAL IMAGE ANALYSIS: PRACTICAL LECTURE

Lorenzo Bruzzone

E-mail: lorenzo.bruzzone@ing.unitn.it
Web page: http://rslab.disi.unitn.it

Outline

1. Processing Chain for Change Detection

2. Change Vector Analysis (CVA)
 - Effects of Radiometric Differences
 - Effect of Residual Misregistration
 - Detection of Multiple Changes

3. Compressed Change Vector Analysis (C2VA)
 - Effects of Radiometric Differences
 - Effect of Residual Misregistration
 - Detection of Multiple Changes
 - Analysis of Direction Ambiguity
Processing Chain for Change Detection

- \(X_1 \) image at time \(t_1 \)
- \(X_2 \) image at time \(t_2 \)

1. **Radiometric Corrections**
2. **Image Coregistration**
3. **Image Comparison (CVA or C²VA)**
4. **Change Information Extraction**
5. **Change Detection Map**

Change Vector Analysis (CVA)

Assumption: only 2 spectral channels are considered for each date.

- \(X_1 \) Multispectral image at time \(t_1 \)
- \(X_2 \) Multispectral image at time \(t_2 \)

1. **Vector Difference**
2. **Change Image**
3. **Direction Image**
4. **Magnitude Image**

- \(X_i = \sqrt{(X_{1i} - X_{2i})^2} \)
- \(X_o = \tan^{-1}\left(\frac{X_{2i}}{X_{1i}}\right) \)
Select image at time t_1;
Select image at time t_2;
Select the desired pre-processing steps;
Select CVA option;
Select the spectral channels to highlight the changes;
Press “Calculate” to:
Perform pre-processing (if any);
Compute magnitude and direction;
Visualize polar representation.

If “Coregistration” check box is selected, coregistration form appears;
Select Ground Control points (at least 4);
Co-registration is performed by means of bilinear interpolation.

Once finished select
File -> Close Control Point Selection Tool
Select threshold for the magnitude variable:

- Perform automatic threshold selection (press “Compute automatic threshold” and wait some seconds);
- Manual threshold selection moving the red line on the histogram or cursor on the T scroll;
- Use zoom to better detect the threshold.

Press “Apply threshold” to:
- Threshold the magnitude;
- Move to direction analysis.

Select whether presence/absence of change information should be used in the analysis of direction information.
CVA

Select threshold(s) for the direction variable:

- Manual threshold selection moving the red and black lines on the histogram.
- Or moving the cursors on the T₁ and T₂ scrolls;
- Use zoom option to better detect the threshold(s).

Press “Apply threshold(s)” to:

- Threshold the direction;
- Visualize the final change detection map.
CVA: Outputs & Notes

Outputs:
- Multispectral difference image;
- Magnitude image;
- Direction image;
- Thresholded magnitude image;
- Thresholded direction image;
- Change detection map;
- Polar plot;

Notes:
- All outputs are saved in “Output” folder.
- Images are saved as a data file plus header format and can be loaded either in Matlab or ENVI environment.
- Each run overwrites output files, if you don’t want to loose them rename the files.
- Polar plot is saved in Matlab .fig format.

CVA: Suggested Tests

Preform trials in order to analyze:
- The effect of using images with radiometric differences;
- The effect of using images with a significant amount of residual misregistration;
- The effect of using different combinations of spectral channels.
- The effect of the presence of multiple changes.

Tip: instead of thresholding, manually draw regions on the polar plot to isolate specific clusters of pixels.
CVA: Example and Discussion of Results

Study area: Lake Mulargia, Sardinia Island (Italy).

Multitemporal data set: a portion of 412×300 pixels of two images acquired by the TM sensor of Landsat-5 satellite in September 1995 and July 1996.

Compressed Change Vector Analysis (C\(^2\)VA)

- CVA in 2 dimensions permits to easily visualize the change information in polar coordinates, but may result in the loss of information due to spectral channel selection.

- CVA may be applied on \(B > 2\) spectral channels in hyperspherical coordinates. However, when \(B\) is greater than 3 it is impossible to visualize the data in the polar domain.

- Compressed CVA (C\(^2\)VA) can overcome the abovementioned limit of polar CVA.

Compressed Change Vector Analysis (C\(^2\)VA)

Magnitude: the length of the multispectral difference vector \((\text{X}_d)\).

\[
\text{X}_d = \sqrt{\sum_{b=1}^{B} \text{X}_{d,b}^2} = \sqrt{\sum_{b=1}^{B} (\text{X}_{d,b} - \text{X}_{\text{ref},b})^2}
\]

Direction: the angle between the multispectral difference vector \((\text{X}_d)\) and a reference vector \((\text{X}_{\text{ref}})\) in a BD space.

\[
\alpha = \arccos \left(\frac{\sum_{b=1}^{B} (\text{X}_{d,b} \cdot \text{X}_{\text{ref},b})}{\sqrt{\sum_{b=1}^{B} \text{X}_{d,b}^2} \cdot \sqrt{\sum_{b=1}^{B} \text{X}_{\text{ref},b}^2}} \right)
\]

\(\alpha \in [0, \pi]\)

BD unit vector:

\[
\begin{pmatrix}
\text{B} \\
\text{B} \\
\text{B}
\end{pmatrix}
\]
Definitions

1. **Compressed CVA (C²VA) Domain**
 \[C²VA = \{ \rho, \alpha : 0 \leq \alpha < \pi \} \]
 \[\rho_{\text{max}} = \max \left\{ \sum_{n=0}^{N} x_{n}^{2} \right\} \]
 \[\alpha \rightarrow \text{Random variable associated with direction image } X_{\alpha} \]

2. **Semi-Circle of unchanged pixels**
 \[SC_{n} = \{ \rho, \alpha : 0 \leq \rho < T \text{ and } 0 \leq \alpha < \pi \} \]

3. **Semi-Annulus of changed pixels**
 \[SA_{c} = \{ \rho, \alpha : T \leq \rho < \rho_{\text{max}} \text{ and } 0 \leq \alpha < \pi \} \]

4. **Annular sector of the k-th kind of change**
 \[S_{k} = \{ \rho, \alpha : \rho \geq T \text{ and } \alpha_{n} \leq \alpha < \alpha_{n+1}, 0 \leq \alpha_{n} < \alpha_{n+1} < \pi \} \]
C²VA: Suggested Tests

Preform trials in order to analyze:

- The effect of using images with radiometric differences;
- The effect of using images with a significant amount of residual misregistration;
- The effect of the presence of multiple changes;
- The effect of ambiguity in the direction information.

Tip: instead of thresholding, manually draw regions on the polar plot to isolate specific clusters of pixels.

C²VA: Example and Discussion of Results

Study area: Lake Mulargia, Sardinia Island (Italy).

Multitemporal data set: a portion of 412×300 pixels of two images acquired by the TM sensor of Landsat-5 satellite in September 1995 and July 1996.

Changes: 2 natural changes, 1 simulated change

- Lake surface enlargement
- Simulated burned area
- Open quarry enlargement

September 1995
July 1996
C\(^2\)VA: Example and Discussion of Results

Advantages:

- C\(^2\)VA permits to easily visualize the change information in polar coordinates without the need of pre-selecting pairs of spectral channels (which is difficult when no prior information on the kinds of changes present in the images is available).

Disadvantages:

- Some ambiguity may rise from the dimension reduction process mainly for the simplified representation of the angle variable: this may result in similar direction values for different kind of changes.
References

Acknowledgments

The material for this practical lecture, including slides and software tool, has been developed with the collaboration of Remote Sensing Laboratory members at the University of Trento.

Special thanks to: Carlo Marin, Francesca Bovolo, Sicong Liu.