ERROR ANALYSIS OF GOCE DATA FOR SOLID EARTH APPLICATIONS

HOW MUCH CAN WE BELIEVE MODELS OF THE EARTHS' INTERIOR?

MARK VAN DER MEIJDE, ROLAND PAIL, THOMAS FECHER

WITH CONTRIBUTIONS FROM:
JORDI JULIA (UNIV FED RIO GRANDE NORTE, BRAZIL)
MARCELO ASSUMPÇÃO (UNIV SAO PAOLO, BRAZIL)
ANDY NYBLADE (PENNSTATE, USA)
ISLAM FADEL (UT-ITC)
PAVEL DITMAR (TU DELFT)
Resolving earth structure is trying to find something that is invisible…

many approaches and solutions possible

Choices are based on researcher

Errors and uncertainties are unclear

Question: what is the uncertainty / reliability of model

Source: van der Meijde et al, 2013
ERROR/UNCERTAINTY ANALYSIS

Three major components to uncertainty analysis

1. Sensor/measurement uncertainty
2. Mathematical and/or modelling uncertainty
3. ‘Application’ uncertainty

Approach:
Simple model, add uncertainties, compare to other techniques
Our starting point:
“simple” models that do not rely on \textit{a priori} constraints or knowledge of area

Method:
- Fitting of Fourier surface through corrected gravity signal

Validation through:
- Comparison with receiver function results (local estimates under seismic station)
- Comparison with global CRUST1, seismic models
- Through validation at known crustal structure, reliability for other parts can be estimated
CRUSTAL MODEL
SOUTH AMERICA

Input layers:
- Gravity anomaly
- Bouguer correction
- Sediment correction
 - Fixed contrast of 200 kg/m3
 - no depth dependence

Final output for further processing

Source: van der Meijde et al, 2013
MOHO MODEL

- Over 65 in Andes to less than 6 km in oceanic basins
- Thickest crust in central Andes
- Brazilian shield is thicker than Guyana shield
- Thinning (?) in basins along Andean Foreland as well as Solimoes and Amazon basins

Source: van der Meijde et al, 2013
COMPARISON WITH SEISMOLOGICAL OBSERVATIONS

- Overall >70% similar
- Stable part 88%
- Andes 60% (especially underestimation)
- Caribbean orogenic zone shows scatter

Source: van der Meijde et al, 2013-90°
SENSOR AND MEASUREMENT UNCERTAINTY

- We used computed "error coefficients", that are consistent with the GOCE variance-covariance matrix, added to the gravity model coefficients, converted to error grids of gravity anomalies.

- The variance-covariance matrix is a result of the sensor characteristics and the ground coverage and satellite altitudes.

- Monte Carlo simulation of this coefficients in this matrix gives possible uncertainty solutions, each one of them equally likely.
OBSERVATIONS

- Maximum error/uncertainty for South America in the crustal thickness due to sensor errors in the order of 1 km crustal thickness
- Error is smaller than widely accepted ‘Earth science uncertainty’
- The error is smooth, and gradually changes. No abrupt changes (= important for analysis of small scale features)
MODEL COMPARISON

- Comparison between
 - gravity only models,
 - gravity based models and,
 - seismological models

- Different data sources, different techniques but all trying to solve the same object
THE DIFFERENT MODELS

Source: van der Meijde et al, 2014
DIFFERENT MODELS AND POINT OBSERVATIONS

Source: van der Meijde et al, 2014
THE DIFFERENCES

Source: van der Meijde et al, 2014
SPECIFIC DIFFERENCES

- Similar modelling approach but with:
 - Different parameterizations
 - Inversion in different domains (spatial vs frequency)

Source: van der Meijde et al, 2014
MOST REMARKABLE DIFFERENCE

- Two seismological models
 - Both widely used
 - Different modelling approach (data driven vs knowledge driven)
 - Difference ranging from -15 km up to +28 km!

Source: van der Meijde et al, 2014
IN SUMMARY

- GOCE error propagation into solid earth science modelling contributes insignificantly to the final model.
- Errors are an order of magnitude smaller than uncertainties resulting from using different modelling approaches.
- Uncertainties resulting from the chosen modelling approach are much larger, in exceptional cases even 28 km.
- Propagation of errors might be influenced by the chosen modelling approach, should be further evaluated.
Inversion is a fantastic tool to provide us an insight into unexplored depths

BUT: it is a tricky business!

Choices in modelling techniques, parameters to include, filtering, conversion criteria, smoothness, etc all play a major role

Small changes in the above mentioned factors can lead to significantly different models

Lack of validation can be a problem → Fixing your model at a few locations doesn’t mean that the rest of the model is good!!!
A good fit in your inversion doesn’t mean that your model is good!

- Always link to earth science content!
 Are your parameters realistic?

- Keep enough points for validation of the model

- How biased are you towards a certain outcome and have selected parameters or method accordingly?