Iceberg monitoring service by joint use of drift model, SAR and altimeter data

N. Longépé, F. Mercier, J.Y Lebras, M. Sutton, G. Hajduch
Collecte Localisation Satellites (CLS)

SeaSAR, Tromso, June 21, 2012
Iceberg monitoring service

- An 24/7 Iceberg detection service delivered during
 - the Vendee Globe Challenge (2008-2009) a sailing race around the world, for single-handed, without any stopover
 - the Jules Verne Trophy (2010) record attempt with Groupama 3 skippered by Franck Cammas
 - the solo round the world (2011) of Sodebo skippered by Thomas Coville

- Service included
 - Preliminary iceberg detection by altimeter
 - Iceberg detection using SAR imagery
 - Iceberg drift forecast

- Further scientific/technical development
 - SIDARUS FP7 project
 - CITEPH program (sponsored by GEP – Total oil company, Doris, CGG Veritas …)
System and processing chains

- SAR Images
 - SARTool
 - SAR Icebergs
 - Drift Model
 - GIS
 - METOC data
 - Argos buoys
 - Icebergs positions
 - Altimetry
 - Altimetry data
 - Alti Algorithm
 - Altimetry Icebergs
 - End-User
System and processing chains

- Altimetry data
- Alti Algorithm
- Altimetry Icebergs

End-User
Spaceborne altimeter

- Area illuminated by the radar
 - 10-20 km on each side of the track
- Area that actively contribute to the leading edge of the waveform (beginning of the peak)
 - Not more than 5 km on each side of the track (depending on the sea state condition) useful for iceberg detection
Altimeter-based iceberg detection

- Cumulative approach over one month
Toward an efficient data acquisition strategy with altimeter detection

2008-2009: During Vendée Globe Challenge, 250 ENVISAT SAR images were used to monitor icebergs: Very efficient but the market is not ready today for such a high volume of SAR acquisitions.

2010 Jules Verne Trophy: 30 RS2 SAR scenes were programmed in short notice over pre-identified risky areas.

- Use of altimetry allows more efficient planning of SAR acquisition over risky areas
 - Risky areas can be identified and tracked well before the passage of the sailboat
System and processing chains

- SAR Images
 - SARTool
 - SAR Icebergs

- Altimetry data
 - Alti Algorithm
 - Altimetry Icebergs

SAR acquisition strategy

End-User
SAR-based iceberg detection

<table>
<thead>
<tr>
<th>Imaging mechanism</th>
<th>Possible detection methods</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-bounce scattering</td>
<td>CFAR-like approach</td>
<td>Commonly used method, robust, good capacities except at steep angle or strong wind condition</td>
</tr>
<tr>
<td>Shadowing, Specular reflection</td>
<td>Dark point-target detection</td>
<td>Observable with decametric resolution only</td>
</tr>
<tr>
<td>Effect of surrounding sea surface, Wakes</td>
<td>Segmentation, Hough transform</td>
<td>Strongly depend on sea condition</td>
</tr>
<tr>
<td>Shape</td>
<td>Image segmentation</td>
<td>Large icebergs only</td>
</tr>
<tr>
<td>Volume scattering</td>
<td>Multifrequency or polarimetric approach</td>
<td>Observable only with multi channel data, for sea surface only</td>
</tr>
</tbody>
</table>

- **SAR data**
 - Land masking
 - Pre-screening CFAR detection
 - False alarm discrimination
 - Geographical database
 - Ancillary data
 - Supervisory control
Current performance

- Over 218 ASAR WSM in HH channel from Vendée Globe 2008-2009 dataset
 - No ground truth but a systematic detection approach
 - Occurrences of detection wrt incidence angle, wind speed
 - Valid for WSM products only (150m resolution – 75 m pix. spacing)
 - medium (61-122m length), large (123-213m) and extra-large (> 213m) icebergs

- Incidence angle appears as a critical parameter.
 - Below 30°, the detection rate is particularly low

- CFAR algorithm: based on the supposedly high contrast between the iceberg and the ocean clutter
 - Increase of ocean backscattering (linked to incidence angle or wind speed) -> diminution of the overall detection accuracy.

http://www.cls.fr
SAR-based iceberg detection

- Modeling of detection performance
 - Given incidence angle and wind speed (by ancillary data) -> a priori probability of detection

ECMWF wind field
A priori iceberg detection rate
Detected icebergs
SAR-based iceberg detection

WSM acquisitions in South Atlantic and Indian Oceans from Dec 2008 – mid-Feb 2009

Probability of iceberg detection

http://www.cls.fr
System and processing chains

- SAR images
- SARTool
- SAR Icebergs
- Drift Model
- METOC data
- Icebergs positions
- End-User

- Altimetry data
- Alti Algorithm
- Altimetry Icebergs
- SAR acquisition strategy
- Argos buoys
- Icebergs positions
MOBIDRIFT

Icebergs

Oil spill

Leeway

Container

Iceberg modeling with:
- advection
- thawing
- rolling over
- dislocation
- icebergs generation

http://www.cls.fr
Example of Drift modelling and validation with B15N
B15N: Status Oct., 28 and Nov. 9, 2011
B15N: Drift simulation from Oct., 28 and until Nov. 9, 2011
Deterministic and probabilistic approaches

Probability of iceberg’s presence
> 50 % in red
> 68% in Orange
> 95% in Yellow
= 100% in White
Next challenges and perspectives

• Development of a complete prototype for iceberg detection and forecast
 – Use of altimetry: more efficient planning of SAR acquisition over risky areas
 – SAR data enable a reliable and well-controlled iceberg detection
 – Drift model for an Early Warning System

• Technical/scientific challenges
 – Complete integration of various data types (SAR, altimeter and metoc data)
 – Ensure a low false alarm rate with altimetry (waveform analysis)
 – Ensure a good SAR-based detection rate even in the icepack
 • Integration of SAR-based sea ice map -> toward an automated methodology?
 • Tune the CFAR-based method?

• Future demonstrations
 – the Vendee Globe Challenge (2012-2013)
 – An Early Warning System for oil platform, ongoing prototype demonstration for the Shtokman gas field in the Barents Sea

http://www.cls.fr

© Connaître aujourd’hui, mieux vivre demain
© Connaître aujourd’hui, mieux vivre demain