
ESA EOSS, Frascati,  1-12 August 2016 

Data assimilation principles 

Angela Benedetti  
(European Centre for Medium-Range Weather Forecast) 

 
Based on a lecture by: 

 
Mike Fisher (ECMWF) 



ESA EOSS, Frascati,  1-12 August 2016 

•  General assimilation concepts and historical perspective 
 

• One-dimensional example 
 

• Extension to multi-dimensions 
 

• Introduction to 3D and 4D-VAR 
 

• Introduction to Tangent Linear and Adjoint operators 

Outline 



ESA EOSS, Frascati,  1-12 August 2016 

Introduction 

Analysis: The process of approximating the true state of a (geo)physical 
system at a given time. 

• For example: 

     - Hand analysis of synoptic observations (1850 LeVerrier, Fitzroy). 

     - Polynomial Interpolation (1950s Panofsky) 

• An important step forward was made by Gilchrist and Cressman (1954), 
who introduced the idea of using a previous numerical forecast to provide 
a preliminary estimate of the analysis. 

• This prior estimate was called the background. 
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Introduction (cont.) 

• Bergthorsson and Doos (1955) took the idea of using a background  

field a step further by casting the analysis problem in terms of 

increments which were added to the background. 

• The increments were weighted linear combinations of nearby 

observation increments (observation minus background), with the 

weights determined statistically. 

• This idea of statistical combination of background and synoptic 

observations led ultimately to Optimal Interpolation. 

• The use of statistics to blend model fields with observations is 

fundamental to all current methods of analysis. 
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Data Assimilation 

• An important change of emphasis happened in the early 1970s with the 
introduction of primitive-equation models. 

• Primitive equation models support inertia-gravity waves. This makes them 
much more fussy about their initial conditions than the filtered 

     models that had been used previously. 

• The analysis procedure became much more intimately linked with the 
model. The analysis had to produce an initial state that respected the 
model's dynamical balances. 

• Unbalanced increments from the analysis procedure would be rejected as 
a result of geostrophic adjustment. 

• Initialization techniques which suppress inertia-gravity waves became 
important. 
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Data Assimilation (cont.) 

• The idea that the analysis procedure must present observational 
information to the model in a way in which it can be absorbed (i.e. not 
rejected by geostrophic adjustment) led to the coining of the term data 
assimilation. 

• A final impetus towards the modern concept of data assimilation came 
from the increasing availability of asynoptic observations from satellite 
instruments. 

• It was no longer sufficient to think of the analysis purely in terms of spatial 
interpolation of contemporaneous observations. 

• The time dimension became important, and the model dynamics 
assumed the role of propagating observational information in time to 
allow a synoptic view of the state of the system to be generated from 
asynoptic data. 
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One dimensional analysis 

• Suppose we want to estimate the temperature of this room, given: 

• A prior estimate: Tb. 

    E.g., we measured the temperature an hour ago, and we have some idea 
(i.e. a model) of how the temperature varies as a function of time, the 
number of people in the room, whether the windows are open, etc. 

• A thermometer: To. 

Denote the true temperature of the room by Tt. 

• The errors in Tb and To are: 

  εb = Tb – Tt 

  εo = To – Tt 

• We will assume that the error statistics of Tb and To are known, and 

that Tb and To have been adjusted (bias corrected) so that their 

mean errors are zero: εb = εo = 0 
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One dimensional analysis (cont.) 

• We estimate the temperature of the room as a linear combination of 

Tb and To: 

Ta = αTo + βTb + γ 

• Denote the error of our estimate as εa = Ta – Tt 

• We want the estimate to be unbiased: εa = 0. 

• We have: 

Ta = Tt + εa = α(Tt + εo) + β (Tt+ εb) + γ 

• Taking the mean and rearranging gives: 

εa = (α + β -1)Tt + γ 

Since this holds for any Tt, we must have 

 γ=0      and    α+ β-1 =0   

hence: Ta = α To + (1 - α )Tb 



ESA EOSS, Frascati,  1-12 August 2016 

One dimensional analysis (cont.) 

• The general Linear Unbiased Estimate is: 

Ta = α To + (1 - α)Tb 

• Now let’s consider the error of this estimate. 

• Subtracting Tt from both sides of the equation gives 

                                    εa = α εo + (1 - α) εb 

• The variance of the estimate is: 

                             𝜀𝜀𝑎𝑎2 = 𝛼𝛼2𝜀𝜀𝑜𝑜2 + 2α(1 − α)𝜀𝜀𝑜𝑜𝜀𝜀𝑏𝑏  + (1 − 𝛼𝛼)2𝜀𝜀𝑏𝑏2 

• The quantity 𝜀𝜀𝑜𝑜𝜀𝜀𝑏𝑏 represents the covariance between the error of our 

prior estimate and the error of our thermometer measurement. 

• There is no reason for these errors to be connected in any way. 

• We will assume that 𝜀𝜀𝑜𝑜𝜀𝜀𝑏𝑏= 0. 
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One dimensional analysis (cont.) 

• The minimum-variance estimate occurs when 

𝑑𝑑ε𝑎𝑎2

𝑑𝑑α= 2 αε𝑜𝑜2�  − 2 (1 − α) ε𝑏𝑏2� = 0 

which gives an estimate for α: 

α=
ε𝑏𝑏2�

ε𝑏𝑏2� + ε𝑜𝑜2�
 

 

• It can be shown that the error variance of this minimum-variance  

estimate is: 

ε𝑎𝑎2 =
1
ε𝑜𝑜2�

 + 
1
ε𝑏𝑏2�

−1
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Extension to multiple dimensions 

• The major difference between the simple scalar example and the multi-
dimensional case is that there is no longer a one-to-one correspondence 
between the elements of the observation vector and those of the 
background vector. 

• It is no longer trivial to compare observations and background. 

• Observations are not necessarily located at model grid-points 

• The observed variables (e.g. radiances) may not correspond directly with 
any of the variables of the model. 

• To overcome this problem, we must assume that our model is a more-or-
less complete representation of reality, so that we can always determine 
“model equivalents” of the observations. 
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Extension to multiple dimensions 

• We formalize this by assuming the existence of an observation operator, H. 

• Given a model-space vector, x, the vector H(x) can be compared directly with the 
observation vector y and represents the “model equivalent” of y. 

• For now, we will assume that H is perfect. I.e. it does not introduce 

any error, so that H(xt) = yt, where xt is the true state, and yt contains the true values 
of the observed quantities. 

• The analysis equation in the multi-dimensional case becomes: 
𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑏𝑏 + 𝐾𝐾(𝑦𝑦 − 𝐻𝐻(𝑥𝑥𝑏𝑏)) 

 

K plays the same role played by the constant α in the scalar example. 

• K is called the gain matrix and determines the weight given to observations 

• It also handles the transformation of information defined in “observation space” to 
the space of the model variables (i.e. from radiance to temperature). 
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Extension to multiple dimensions 

• Th expression for the analysis error is 

𝜺𝜺𝒂𝒂 𝜺𝜺𝒂𝒂𝑻𝑻 = I − KH 𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻 (𝐼𝐼 − 𝐾𝐾𝐾𝐾)𝑇𝑇+𝐾𝐾𝜺𝜺𝒐𝒐 𝜺𝜺𝒐𝒐𝑻𝑻 𝐾𝐾𝑇𝑇 

which is equivalent to the scalar case 𝜀𝜀𝑎𝑎2 = (1 − 𝛼𝛼)2𝜀𝜀𝑏𝑏2 + 𝛼𝛼2𝜀𝜀𝑜𝑜2 

but 𝜺𝜺𝒂𝒂 𝜺𝜺𝒂𝒂𝑻𝑻, 𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻, 𝜺𝜺𝒐𝒐 𝜺𝜺𝒐𝒐𝑻𝑻 are covariance matrices. 

Again we see that K plays essentially the same role in the multi-dimensional 
analysis as 𝛼𝛼 plays in the scalar case.  

In the scalar case we chose 𝛼𝛼 so that the variance of the analysis error was 
at a minimum.  

In the multi-dimensional case a similar thing can be done but since we are 
dealing with matrices we have to chose K so that the trace (sum of the 
diagonal elements) of the analysis error covariance matrix is zero. This is 
mathematically equivalent to the scalar case although the formalism is more 

complex. 
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Extension to multiple dimensions 

It can be shown than  

K = 𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻 𝐻𝐻𝑇𝑇[𝐻𝐻𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻 𝐻𝐻𝑇𝑇+ 𝜺𝜺𝒐𝒐 𝜺𝜺𝒐𝒐𝑻𝑻]−1 

This optimal gain matrix is called the Kalman Gain Matrix. 

Note the similarity with the optimal gain we derived for the scalar analysis: 

α=
ε𝑏𝑏2�

ε𝑏𝑏2� + ε𝑜𝑜2�
 

The variance of analysis error for the optimal scalar problem was: 

ε𝑎𝑎2 =
1
ε𝑏𝑏2�

 + 
1
ε𝑜𝑜2�

−1

 

The equivalent expression for the multi-dimensional case is: 

𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻 =  [ 𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻
−1

+ 𝐻𝐻𝑇𝑇 𝜺𝜺𝒐𝒐 𝜺𝜺𝒐𝒐𝑻𝑻
−1
𝐻𝐻]−1 

 



ESA EOSS, Frascati,  1-12 August 2016 

Notation 

• The standard notation for the covariance matrices is: 

 

𝜺𝜺𝒃𝒃 𝜺𝜺𝒃𝒃𝑻𝑻 = 𝑃𝑃𝑏𝑏 

𝜺𝜺𝒂𝒂 𝜺𝜺𝒂𝒂𝑻𝑻 = 𝑃𝑃𝑎𝑎 

𝜺𝜺𝒐𝒐 𝜺𝜺𝒐𝒐𝑻𝑻 = 𝑅𝑅 

 

• In many analysis schemes, the true covariance matrix of background 
error is not known or is too large to be used 

• In this case, we use an approximate background error covariance matrix, 
indicated with the symbol B. 
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Assimilation Methods: Optimal Interpolation 

• Optimal interpolation is a statistical data assimilation method based on 

the multi-dimensional analysis equations we have just derived. This method 

was used operationally at ECMWF from 1979 until 1996, when it was replaced by 
3D-Var. 

• The basic idea is to split the global analysis into a number of boxes which can be 
analysed independently 

𝑥𝑥𝑎𝑎
𝑖𝑖 = 𝑥𝑥𝑏𝑏

𝑖𝑖 +  𝐾𝐾(𝑖𝑖) (𝑦𝑦 𝑖𝑖  − 𝐻𝐻 𝑖𝑖  𝑥𝑥𝑏𝑏 )  

• In principle, one should use all available observations to calculate the analysis for 
each box. However, this is too expensive.  

• For computational reasons, OI restricts the observations used for each box to 
those observations which lie in a surrounding selection area. 

• Also, because the analysis solution is computed with direct methods and the 
matrices have to be specified explicitly, OI can only be used with simple 
interpolation operators. This is why it was replaced by 3D-Var. 
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Assimilation Methods: 3D-Var 

• Iterative methods to solve the analysis equations are more efficient than 
the direct methods used in OI. 

• They can be applied to much larger problems than direct techniques and 
do not require access to matrix elements. 

• Linear 3D-Var analysis can be seen as an application of iterative solution 
methods to the linear analysis equation. 

• Historically, 3D-Var was not developed this way. 

• We will now consider this alternative derivation. 

• We will need to apply Bayes' theorem: 

• 𝑝𝑝 𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐵𝐵 =  𝑝𝑝  𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴  𝑝𝑝(𝐴𝐴)
𝑝𝑝(𝐵𝐵)
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Maximum likelihood 

• We developed the linear analysis equation by searching for a linear 
combination of observation and background that minimized the variance 
of the error. 

• An alternative approach is to look for the most probable solution, given 
the background and observations: 

𝑥𝑥𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 p(x given y and 𝑥𝑥𝑏𝑏)) is at its max 

• It is convenient to define a cost function  
𝐽𝐽 = − log(p(x given y and 𝑥𝑥𝑏𝑏) + const 

 

• Since  log is a monotonic function: 
𝑥𝑥𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝐽𝐽 𝑥𝑥  𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
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Maximum likelihood (cont.) 

• The maximum likelihood approach is applicable to any probability density 
functions.  

• Considering the  special case of Gaussian probability distributions 

𝑝𝑝(𝑥𝑥𝑏𝑏) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ exp −
1
2

 𝑥𝑥𝑏𝑏 − 𝑥𝑥 𝑇𝑇 𝐵𝐵 −1 (𝑥𝑥𝑏𝑏 − 𝑥𝑥)   

p(𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ exp −1
2

 𝑦𝑦 − 𝐻𝐻 𝑥𝑥 𝑇𝑇 𝑅𝑅 −1 (𝑦𝑦 − 𝐻𝐻(𝑥𝑥))   

 

• With an appropriate choice of constants: 

𝐽𝐽 𝑥𝑥 =
1
2

 𝑥𝑥𝑏𝑏 − 𝑥𝑥 𝑇𝑇 𝐵𝐵 −1 𝑥𝑥𝑏𝑏 − 𝑥𝑥 +
1
2

 𝑦𝑦 − 𝐻𝐻 𝑥𝑥 𝑇𝑇 𝑅𝑅 −1 (𝑦𝑦 − 𝐻𝐻(𝑥𝑥)) 

• This is the 3D-Var cost function  

• At the minimum, the gradient of the cost function is zero and the 
probability of a certain state (analysis) happening is maximum  
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Maximum likelihood (cont.) 

• The maximum likelihood approach can be naturally expressed in terms of a cost 
function representing minus the log of the probability of the analysis state. 

• The minimum of the cost function corresponds to the maximum likelihood 
(probability) solution. 

• For Gaussian errors and linear observation operators, the maximum likelihood 
analysis coincides with the minimum variance solution. 

• This is not the case in general. 

• In the nonlinear case, the minimum variance approach is difficult to apply. 

• The maximum-likelihood approach is much more generally applicable. 

• As long as we know the probability distributions, we can define the cost function. 

• However,  finding the global minimum may not be easy for highly non-Gaussian 
probability distribution functions. 

• In practice, background errors are usually assumed to be Gaussian.  

• This makes the background-error term of the cost function quadratic. 
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Strong Constraint 4D-Var 

• So far, we have tacitly assumed that the observations, analysis and background 
are all valid at the same time, so that H includes spatial, but not temporal, 
interpolation. 

• In 4D-Var, this assumption is relaxed. 

• Let's use G to denote a generalised observation operator that: 

 - Propagates model  fields defined at some time t0 to the (various) times at 
which the observations were taken. 

 - Spatially interpolates these propagated fields 

 - Converts model variables to observed quantities 

• We will use a numerical forecast model to perform the first step. 

• Note that, since models integrate forward in time and we do not have an inverse 
of the forecast model, the observations must be available for times tk greater or 
equal to t0. 
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Strong Constraint 4D-Var 

• Formally, the 4D-Var cost function is identical to the 3D-Var cost function. We 
simply replace H by G: 

𝐽𝐽 𝑥𝑥 =
1
2

 𝑥𝑥𝑏𝑏 − 𝑥𝑥 𝑇𝑇 𝐵𝐵 −1 𝑥𝑥𝑏𝑏 − 𝑥𝑥 +
1
2

 𝑦𝑦 − 𝐺𝐺 𝑥𝑥 𝑇𝑇 𝑅𝑅 −1 (𝑦𝑦 − 𝐺𝐺(𝑥𝑥)) 

• However, it makes sense to group observations into sub-vectors of 
observations, yi , that are valid at the same time, ti . 
• It is reasonable to assume that observation errors are uncorrelated in 
time. Then, R is block diagonal, with blocks Ri corresponding to the 
sub-vectors yo . 
• The cost function is then expressed as follows: 

 
𝐽𝐽 𝑥𝑥 = 1

2
 𝑥𝑥𝑏𝑏 − 𝑥𝑥 𝑇𝑇 𝐵𝐵 −1 𝑥𝑥𝑏𝑏 − 𝑥𝑥 + 1

2
∑ (𝑦𝑦𝑖𝑖 − 𝐺𝐺𝑖𝑖 (𝑥𝑥))𝑇𝑇 𝑅𝑅−1𝑁𝑁
𝑖𝑖=0  (𝑦𝑦𝑖𝑖 − 𝐺𝐺𝑖𝑖 (𝑥𝑥)) 

Now, each generalised observation operator can be written as 𝐺𝐺𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑀𝑀(𝑡𝑡𝑜𝑜 , 𝑡𝑡𝑖𝑖 ) 
where: 
•  M(t0,ti) represents an integration of the forecast model from time t0 to 
time ti . 
• Hi represents a spatial interpolation and transformation from model 
variables to observed variables (observation operator) 
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Weak Constraint 4D-Var 

• Note that by introducing the vectors xi we have converted an unconstrained 
minimization problem into a problem with strong constraints as she solution xi has 
to satisfy the model equation: 

 

𝑥𝑥𝑖𝑖 = 𝑀𝑀(𝑥𝑥𝑖𝑖−1) 

• For this reason, this form of 4D-Var is called strong constraint 4D-Var. 
• The generalised observation operators Gi are assumed to be perfect, i.e. 

error-free. 
• This is called perfect model assumption. 
• The perfect model assumption limits the length of analysis window that 

can be used to roughly 12 hours (for an NWP system). 
• Relaxing this assumption (to account for model deficiencies) and allowing 

for the model to have an associated error leads to an alternative 
formulation of the 4D-Var problem which is called weak-constraint 4D-Var. 
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Summary 

• Current assimilation methods for Numerical Weather Prediction or Chemical Data 
Assimilation are based on a linear or linearized analysis equation which can be 
solved in different ways.  

• Direct methods of solution such as OI are costly for large problems, while iterative 
methods such as 3D-Var can be used with a variety of observations operators 
and for different applications 

• 4D-Var is used at many NWP centres and it has been proven successful for NWP 
and CDA applications 

• Ensemble Kalman methods are very attractive as they provide a way to estimate 
flow-dependent error covariance matrices, and do not require the development of 
tangent linear and adjoint models. 

• Many centres are turning to hybrid techniques in which the background error 
covariance matrix is calculated with an ensemble, and the analysis is then 
performed with the 4D-Var approach. 
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