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Outline  

 

1. Review of concepts from previous lecture.  
- We spend a lot of our time thinking about errors/limitations of 

satellite data.  

2. Background errors and vertical resolution 
- The concept of the observation null space 

3. Systematic biases and bias correction 

 

4. Ambiguity in radiance observations 

 

5. Quality control. 

 

6. Some “new” observation types 

 

7. Summary 
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Review of some key concepts 

 Be aware of the difference between the satellite observation 

and the satellite product/retrieval. (NWP experience in 1980s). 

 Satellite data are extremely important in NWP. 

 Data assimilation combines observations and a priori 

information in an optimal way and is analogous to the retrieval 

inverse problem. 

 Passive nadir sounders have the largest impact on NWP 

forecast skill: 

- Nadir sounders measure radiance (not T,Q or wind). 

- Sounding radiances are broad vertical averages of the temperature 

profile (defined by the weighting functions). 

- The retrieval of atmospheric temperature from the radiances is ill-

posed and all retrieval algorithms use some sort of prior information. 

- Most NWP centres assimilate raw radiances directly due to their 

simpler error characteristics. 4DVAR is now widely used (but hybrid 

techniques have emerged, Ensemble Kalman filters). 
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2.) Background errors,  

vertical resolution and null-

space. 
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Single channel Several channels 

(e.g. AMSUA) 

Selecting radiation in a 

number of frequencies / 

channels improves 

vertical sampling and 

resolution 

Lecture 1: Satellite radiances have 

limited vertical resolution 

ESA Summer School 2014 



Slide 6 

Improving vertical resolution with hyper-

spectral IR instruments (AIRS/IASI) 

  These instruments sample the spectrum 

extremely finely and thus generate many 

thousands of channels peaking at different 

altitudes.  

However, vertical resolution still limited by 

the physics. 
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When we minimize a cost function of the form (in 1D / 3D / 4D-VAR) 

H[x])(yRH[x])(y)x(xB)x(xx m

1T

mb
1T

b  )(J

We can think of the adjustment process as radiances observations correcting 

errors in the forecast background to produce an analysis that is closer to the true 

atmospheric state. For example in the simple linear case... 

 

 
 

 

Because of broad weighting functions the radiances have very little vertical 

resolution and the vertical distribution of forecast errors is crucial to how well 

they will be “seen” and “corrected” by satellite data in the analysis. 

 

This vertical distribution is communicated to the retrieval / analysis via the vertical 

correlations implicit in the background error covariance matrix B (the rows of 

which are sometimes known as structure functions). 

correction  

    term 

Satellite radiances “seeing” and 

“correcting” background errors 
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The “null space” of a measurement 


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Simple example 

 Again I measure the scalar  

 

 

 

 I have model that provides me with an estimate 

 

 

 

 

 But (unfortunately) the background error is 

 

 The background errors could be huge, but they are in the 

measurement null space, so the measurement can’t 

constrain them. You have to know the null space! 
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Real example: GPSRO null space – how does 

the temperature difference at the S.Pole 

propagate through the observation operator  

x xH 

Assumed ob  

errors 

The null space arises because the measurements are sensitive to density as 

function of height (~P(z)/T(z)). A priori information is required to split this into 

T(z) and P(z). We can define a temperature perturbation ΔT(z)~k*exp(z/H) which 

is in the GPSRO null space. Therefore, if the model background contains a bias 

of this form, the measurement can’t see or correct it.  

1K at ~25km 
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“Difficult” to correct “Easy” to correct  

WEIGHTING FUNCTION WEIGHTING FUNCTION 

POSITIVE 

(WARM)  

ERRORS NEGATIVE 

(COLD)  

ERRORS 

Correcting errors in the background 
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If the background errors are mis-specified in the retrieval / analysis  

this can lead to a complete mis-interpretation of the radiance information 

and badly damage the analysis, possibly producing an analysis with larger  

errors than the background state !  

Thus accurate estimation of B is crucial: 

 

• Comparison with radiosondes (best 

estimate of truth but limited coverage) 

 

• Comparison of e.g. 48hr and 24hr 

forecasts (so called NMC method) 

 

• Comparison of ensembles of 

analyses made using perturbed 

observations 

 

•Flow-dependent “error of the day” 

routine estimation 

Sharp errors 

in the Tropics 

Broad errors 

in the mid-lat 

Estimating background error correlations 

Temperature background error 

correlations with 700 hPa level: 
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Specified 

background error 

correlation for  

specific level. 

Error in background 

Increments 

Error in analysis 

Example of background constraint 
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• Use of correlation information from the EDA in 4D-Var 

 

 

 

Ensemble of Data Assimilations 

EDA StDev of LNSP EDA Lscale of BG errors LNSP 

Forecast Products Users meeting 
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3.) Systematic errors and 

bias correction 
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Systematic errors (or biases) must be removed before the assimilation 

otherwise biases will propagate in to the analysis (causing global 

damage in the case of satellites!). 

 

       Bias  =  mean [ Yobs – H(Xb) ] 

Observed  

radiance 

RT model Background 

atmospheric  

state 

Sources of systematic error in radiance assimilation include: 

 

• Instrument error (calibration) 

• Radiative transfer error (spectroscopy or RT model) 

• Cloud/rain/aerosol screening errors 

• Systematic errors in the background state from the NWP model 

 

Systematic errors (biases) 
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Diurnal bias variation in a geostationary satellite Constant bias (HIRS channel 5) 

nadir high 

zenith 

angle 

Bias depending on scan  

position (AMSU-A ch 7) 

high 
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Air-mass dependent bias (AMSU-A ch 10) 
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What kind of biases do we see?  (I) 

Biases are obtained from long-term monitoring of observation minus background. 
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METEOSAT-9, 13.4µm channel: 

Drift in bias due to ice-build up on sensor:   

Sensor decontamination O
b

s
 –

F
G

 B
ia

s
 

 Different bias for HIRS due to different 

spectroscopy in the radiative transfer model: 
Obs-FG bias [K] 

C
h
a
n
n
e
l n

u
m

b
e
r 

 Old  

spectroscopy 

 New 

spectroscopy 

Other common causes for biases in 

radiative transfer: 

• Bias in assumed concentrations of 

atmospheric gases (e.g., CO2) 

• Neglected effects (e.g., clouds, 

aerosols) 

• Incorrect spectral response function 

• …. 

What kind of biases do we see?  (II) 
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Monitoring the background departures (averaged in time and/or space):  

O
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HIRS channel 5 (peaking around  

600hPa) on NOAA-14 satellite has 

+2.0K radiance bias against FG. 

Same channel on NOAA-16 satellite has  

no radiance bias against FG. 

NOAA-14 channel 5 has an instrument bias. 

Diagnosing the source of bias (I) 
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This time series shows an 

apparent time-varying bias 

in AMSU channel14 (peaking 

at 1hPa).   

 

By checking against other  

research data (HALOE and 

LIDAR data) the bias was  

confirmed as an NWP model  

temperature bias and the 

channel was assimilated with 

no bias correction 

Diagnosing the source of bias (II) 

What about biases in the forecast model? 
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Bias correction 

• Biases need to be corrected before or during the assimilation. 

• Usually based on a “model” for the bias, depending on a few parameters. 

 Ideally, the bias model “corrects only what we want to correct”. 

 If possible, the bias model is guided by the physical origins of the bias. 

 Usually, bias models are derived empirically from observation 

monitoring. 

• Bias parameters can be estimated offline or as part of the assimilation 

(“variational bias correction”) 

nadir high 

zenith 

angle 

Bias depending on scan  

position (AMSU-A ch 7) 
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Air-mass dependent bias (AMSU-A ch 10) 

ESA Summer School 2014 



Slide 23 

Importance of 

bias correction 

ESA Summer School 2014 

N.Hem. 

S.Hem. 

Forecast impact comparing  

operational bias correction 

vs  

bias correction with static 

global constant only 
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4.) Ambiguity in radiance 

observations 
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When the primary absorber in a sounding channel is a well mixed gas 

(e.g. oxygen) the radiance essentially gives information about variations 

in the atmospheric temperature profile only. 

 

 

 

 

When the primary absorber is not well mixed (e.g. water vapour, ozone) 

the radiance gives ambiguous information about the temperature 

profile and the absorber distribution.  This ambiguity must be resolved 

by: 

 
• Differential channel sensitivity  

 

• Synergistic use of well mixed channels (constraining the temperature) 

 

• The background error covariance (+ physical constraints) 
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Ambiguity between geophysical variables 
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By placing sounding channels in parts of the 

spectrum where the absorption is weak we 

obtain temperature (and humidity) information 

from the lower troposphere (low peaking 

weighting functions).  

 

BUT … 

 
These channels (obviously) become more 

sensitive to surface emission and the effects of 

cloud and precipitation. 

 

In most cases surface or cloud contributions 

will dominate the atmospheric signal in 

these channels and it is difficult to use the 

radiance data safely (i.e. we may alias a cloud 

signal as a temperature adjustment). 

K(z) 

Ambiguity with surface and clouds 
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Options for using lower-tropospheric 

sounding channels 

Ptop 

ne 

AMSUA data usage 2001/11/10 pink=rejected blue=used 

T 
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• Screen the data carefully and only 

use situations for which the surface 

and cloud radiance contributions can 

be computed very accurately a priori 

(e.g. cloud free situations over sea). 

But meteorologically important areas 

are often cloudy! 

 

 

• Simultaneously estimate atmospheric 

temperature, surface temperature / 

emissivity and cloud parameters within 

the analysis or retrieval process (need 

very good background statistics !). Can 

be dangerous. 
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5) Quality Control  
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Data selection and quality control (QC): 

 
The primary purpose of this is to ensure that the 

observations entering the analysis are consistent with the 

assumptions in the observations error covariance (R) and 

the observation operator (H). 

 

Primary examples include the following: 

 

Rejecting bad data with gross error (not described by R) 

 

Rejecting data affected by clouds if H is a clear sky RT 

Thinning data if no correlation is assumed (in R) 

 

Always blacklisting data where we do not trust our QC! 
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Data selection and quality control (QC): 

 
Often checks are performed using the forecast background 

as a reference. That is an observations is rejected if the 

departure from the background exceeds a threshold TQC:   

 

 Yobs – H(Xb)  >  TQC  
 

But sometimes large errors in the background can lead to: 

 
 

•  False rejection of a good observation 

 

•  Missed rejection of a bad observation 
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Data selection and quality control: 

 •  False rejection of a good observation 

The numerous failing observations 

are good, but a bad background is 

causing them to be rejected. We 

need these  observations to 

improve the analysis ! 

Instead of rejecting, we give the 

observations a lower weight so 

collectively they can influence and 

improve the analysis. In this 

framework a single bad observation 

would do no damage. 
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Data selection and quality control: 

 •  Missed rejection of a bad observation 

The radiance are contaminated by 

cloud (cold 5K) compared to the 

clear sky value.  

 

But our computation of the clear sky 

value from the background is also 

cold by 5K due to an error in the 

surface skin temperature.  

 

Thus our checking (against the 

background) sees no reason to 

reject the observation and is it 

passed!   surface 

Cloud signal -5K 

 

 

 

 

 

 

 

 

Model Surface error -5K  
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6.) Some other observation 

types 

 

ESA Summer School 2014 



Slide 35 

GPS (GNSS) Radio occultation  

• Limb measurement. 

• Gradients in refractivity cause bending of a 

signal path between GPS and LEO satellite 

(Snell’s law). 

• Refractivity is a function of temperature, 

humidity and pressure. 

• Bending angle derived from measures of 

phase delay. 

 

 

 

 

 

• Profile information obtained through profiles 

of bending angles. 
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GPS RO characteristics 

 

 All weather-capability:  

 Not affected by cloud or rain.  

 

 Largely bias-free. Can help 

“anchor” bias corrections for 

radiances. 

 

 Good vertical resolution. Can see 

error structures that nadir radiances 

can’t.  
 

1d weighting function: 

 But has broad horizontal weighting function! - Around 70% of the 

bending occurs over a ~450km section of ray-path, centred on the 

tangent point (point closest to surface). 
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GPS RO vs IASI: 1DVAR simulations 

Background 

IASI     

RO      

RO+IASI 

RO      

IASI     
Expected retrieval error: 

Power to resolve a peak-shaped 

error in background: 

See Healy and Collard 2003, 

QJRMS: 
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GPS RO data coverage in 6-hour period 

Data from GRACE-A, GRAS, 

COSMIC-1, COSMIC-2, COSMIC-3, COSMIC-4, COSMIC-5, COSMIC-6    
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Radiosonde comparisons for Antarctica  

12h forecasts 

Red lines: Without GPSRO 

Black: With GPSRO 

Structure in the mean fit thought to be 

caused  by inconsistencies in the AIRS and 

AMSU bias corrections schemes 
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 ESA Earth Explorer 

 Doppler wind lidar to measure line-of-

sight (LOS) wind profiles in the 

troposphere to lower stratosphere (up to 

30 km ) 

 Vertical resolution from 250 m - 2 km 

 Horizontal averages over 50 km every 

200 km 

 Requirements on random error of 

horizontal LOS wind:  

          <1 m/s (z=0-2 km, for Δz=0.5 km)  

          <2  m/s (z=2-16 km, for Δz= 1 km 

 First wind lidar in space; will also give 

information on aerosol/cloud optical 

properties. 

 Launch: not before end of 2015 

[H]LOS 

Atmospheric Dynamics Mission ADM-Aeolus 
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ADM-Aeolus: Simulated impact 

S.Hem

0.0 0.5 1.0 1.5
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Zonal wind forecast error (m/s) 

for 12-hour forecast. 
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Control 

 

 

   

                      Control-sondes 

Expected forecast impact for ADM-

Aeolus has been simulated using 

ensemble methods. 

 
Simulated DWL data adds value at all 
altitudes and well into longer-range 
forecasts. 

6-hour data coverage: 

1000 

100 

500 

0.0 0.5 1.0 1.5 
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Summary 
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