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How does NWP use
observations?

1.) Introduction to data
assimilation for NWP

CCECMWF
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Assimilation of measurements in NWP

Time
Observations Observations Observations
1 - Forecast l - Forecast 1 - Forecast
Analysis » Analysis » Analysis

\ Medium-range forecast

» Acycling data assimilation system.

« A sshort-range forecast provides us with an 3D estimate of the atmospheric
state (P,T, Q, U,V, Ozone).

* We combine the short-range forecast with observations in a statistically
optimal way to produce the “analysis”.

« The analysis provides the initial conditions fore the next forecast.

— S ECMWF



4D-Var assimilation

Its fancy least squares. Optimal estimation:
J) = (x-x,)' B (x-x,) Hy,, ~HX)'R(y,, - H(X)

\

Forward operator includes
NWP modelintegration

T~

Corrected
forecast
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Previous
forecast

Fit ~10 million values x Obs o
in a 12 hour window!
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Example of conventional data coverage

SYNOP/SHIP observations BUOYS

_Total number (_)f obs = 29131
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Example of 6-hourly satellite data coverage
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Composition

Ozone sondes
Air quality stations

s

Mass Moisture

Soil moisture
Rain gauge
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Composition

Sub-mm
VIS+NIR
Lidar
Limb-
sounders

Geo IR
Sounder

Geo IR and
Polar MW
Imagers

Mass Moisture

AMVs
Scatterometers
Wind lidar
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Number of satellite data products monitored at ECMWF
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Number of observations (1000s)
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Anomaly correlation of 500hPa height forecasts

Northern hemisphere

Southern hemisphere
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Combined impact of all satellite data

a Northern hemisphere
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b Southern hemisphere

Anomaly correlation (%)

Forecast Day

EUCOS Observing System
Experiments (OSEs):

« 2007 ECMWEF forecasting system,
» winter & summer season,
« different baseline systems:
* no satellite data (NOSAT),
* NOSAT + AMVs,
* NOSAT + 1 AMSU-A,
» general impact of satellites,
» impact of individual systems,
- all conventional observations.

< 500 hPa geopotential height
anomaly correlation
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AMNOMALY CORRELATION
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Advanced diagnostics

Data assimilation:

max. 12 hours
@

>
State at NWP State at Observation Observation
initial time model timei operator simulations
State at Sensitivity of AD of Sensitivity of AD of Cost
analysis <= costto change+— forecast <«—costtochange<— observation <+— function J
time at initial time model in state at time i operator T
Observations
Forecast sensitivity: —
B Adjoints come up when
° g inimizing functions
State at NWP State at minimizing tunc
initial time model time |
| Take the derivative of the
Sensitivity of Sensitivity of AD of Cost oM :
costto <= costtochange+— forecast *+—| t,nction J model X to get a matrix
observations at initial time model T and then transpose it.
T
Analysis (a_M) ]
ox
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Relat|ve FC error reduction per system

Nadir sounders AMSU-A,
AIRS, and IASI provide
largest impact
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How do passive nadir
sounders measure the
atmosphere?

2.) Passive atmospheric
sounding

CCECMWF



What do satellite instruments measure?

You might retrieve

information about
They DO NOT measure TEMPERATURE. these quantities,

They DO NOT measure HUMIDITY or OZONE. but you don'’t

They DO NOT measure WIND. measure them
directly!

«Satellite instruments measure the radiance L that reaches the top of the
atmosphere at a given frequency v .

*The measured radiance is related to geophysical atmospheric variables
(T,Q,0,, clouds etc...) by the radiative transfer equation.

+ emission T reflectlgn/ + contribution T ...
scattering

L(V) j B (V T (Z))|: d T(V) i| Su.rfa.ce Surfape Cloud/rain
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Atmospheric spectrum

® Depending on the wavelength, the radiation at the top of the
atmosphere is sensitive to different atmospheric
constituents

W i l‘ll!_w “I“
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Frequency selection

By selecting radiation at different frequencies or CHANNELS a satellite
Instrument can provide information on a range of geophysical
variables.

In general, the channels currently used for NWP applications may be
considered as one of two different types:

» Atmospheric sounding channels
 Surface sensing channels

In practice real satellite instruments have a combination of both
atmospheric sounding and surface sensing channels.

ESA Summer School 2014 —‘ I lE‘ MWF



Atmospheric sounding channels

These channels are located in parts of the infra-red and microwave spectrum for
which the main contribution to the measured radiance is described by:

Lo)= [ BOT @) S5

That is they avoid frequencies for which surface radiation and cloud
contributions are important.

They are primarily used to obtain information about atmospheric temperature
and humidity.

AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)
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Surface sensing channels

These are located in window regions of the infra-red and microwave spectrum at
frequencies where there is very little interaction with the atmosphere and the main
contribution to the measured radiance is:

L(v) = Surface emission [ Tar, €(U,V) ]

These are primarily used to obtain information on the surface temperature and
guantities that influence the surface emissivity such as wind (ocean) and
vegetation (land). They can also be used to obtain information on clouds/rain
and cloud movements (to provide wind information) or total-column
atmospheric quantities.
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Atmospheric temperature sounding

Select sounding channels for which

L) = [ B T(z))[df(")}

and the primary absorber is a well mixed gas (e.g. oxygen in MW or CO, in IR).

Then the measured radiance is essentially a weighted average of the
atmospheric temperature profile:

L(v) = jO“’ B(v,T(2))K(2)dz
dr
with K(z) = {E}

The function K(z) that defines this vertical average is known as a
weighting function.

ESA Summer School 2014 —‘ I lE‘ MWF



Ideal weighting functions

If the weighting function was a
delta-function, this would mean that
Z the measured radiance Is sensitive
to the temperature at a single level
In the atmosphere.

K(z)

If the weighting function was a
box-car function, this would mean
Z that the measured radiance was
sensitive to the mean temperature
between two atmospheric levels

»

K(z)

ESA Summer School 2014 —‘ I lE‘ MWF



Atmospheric weighting functions

o

High in the atmosphere very
little radiation is emitted, but
most will reach the top of the
atmosphere.

N

At some level there is an e
optimal balance between the
amount of radiation emitted s
and the amount reaching the
top of the atmosphere -

A lot of radiation is emitted from the

dense lower atmosphere, but very K(Z)
little survives to the top of the

atmosphere due to absorption.

ESA Summer School 2014




Weighting functions continued

* The altitude at which the peak of the weighting

function occurs depends on the strength of
absorption for a given channel.

« Channels in parts of the spectrum where the :;
absorption is strong (e.g. near the centre of CO, or 2
O, lines ) peak high in the atmosphere. £

« Channels in parts of the spectrum where the
absorption is weak (e.g. in the wings of CO, or O,
lines) peak low in the atmosphere.

AMSU-A °

ESA Summer School 2014
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More weighting functions
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Important satellite instruments for NWP

AMSU-A:

» Advanced Microwave Sounding Unit

« 15 channels (12 in 50-60 GHz region)

48 km field-of-view (nadir), 2074 km swath
 Primarily temperature-sounding

* On-board NOAA-15-19, Aqua, METOP-A

AIRS:

» Atmospheric Infrared Sounder

« 2378 channels covering 650 - 2700 cm™* (3.7-15.4 pm)
« 13.5 km field-of-view (nadir), 2130 km swath
 Primarily temperature/humidity-sounding, trace gases

* On-board Aqua

|ASI:

* Infrared Atmospheric Sounding Interferometer

» 8461 channels covering 645 - 2760 cm™ (3.6-15.5 ym)
» 12 km field-of-view (nadir), 2132 km swath

 Primarily temperature/humidity-sounding, trace gases ®
 On-board METOP-A =

ESA Summer School 2014 —‘ I lE‘ MWF




How do we extract
atmospheric information (e.g.
temperature) from satellite
radiances?

3.) Retrieval algorithms

CCECMWF



Extracting atmospheric temperature
from radiance measurements

AR

If we know the entire atmospheric temperature profile
T(z) then we can compute the radiances a sounding
instrument would measure using the radiative transfer
equation. This is sometimes known as the forward  #
problem.

Ul

0

In order to extract or retrieve the atmospheric
temperature profile from a set of measured radiances
we must solve what is known as the inverse problem.

B0

Unfortunately as the weighting functions are generally ¥
broad and we have a finite number of channels, the
inverse problem is formally ill-posed because an
infinite number of different temperature profiles could e '

: . 00000 00250 10
give the same measured radiances !!!

0

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624
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A simple ill-posed problem Ignore any

® Assume | measure measurement error

S for the moment.
Yy =X +X,

® But | want to know the individual components of x using y.

X
X=| "

X

® There are an infinite number of (x;+x,) combinations that
are consistent with the measurement.

® \We need more, a-priori, information to estimate both x;and
X,. The measurement alone cannot provide the solution.
A priori: Perhaps | already have an estimate of x;and x,.

ESA Summer School 2014 —‘ I lE‘ MWF



Some history ... John Eyre (Met Office)

® Satellite data assimilation into NWP models began the
1970’s, but by the 1980’s it was clear that this was having
a—ve impact.

® Early NWP systems designed to make use of sondes.
Satellite products made to look like sondes.

® Satellite sounders and sondes have opposite strengths
and weaknesses

® Treating satellite soundings as “poor-quality sondes” is
flawed.

® Need to really consider the actual information content of
the “raw” measurement!

ESA Summer School 2014 —‘ I lE‘ MWF




Retrieval schemes for NWP

The linear data assimilation schemes used in the past at ECMWF such as
Optimal Interpolation (Ol) were unable to assimilate radiance observations
directly (as they were nonlinearly related to the analysis variables) and the
radiances had to be explicitly converted to temperature products before the
analysis.

This conversion was achieved using a variety of retrieval algorithms that differed
in the way they used prior information

All retrieval schemes use some (either explicit of implicit) form of prior
Information to supplement the information of the measured radiances and solve

the inverse problem !

Several different types of retrieval have been used in NWP:
Examples:

1. Regression / Neural Net (statistical) methods

2. Forecast background (1DVAR) methods

ESA Summer School 2014 —‘ I lE‘ MWF



The difference between (retrievals/products)
and observations

® This is an extremely important point! The retrieval is not
the observation.

® Retrieval
- = (something *a priori) +(something _else * observation)

® Mathematically, a retrieval can be written as a matrix
equation.

X, =(1-KH)x, +Ky .

® It is crucial to consider the role of the a-priori when
using retrievals. What information has the observation
really provided?

ESA Summer School 2014 —‘ I lE‘ MWF




1. Regression and Library search

Using a sample of temperature profiles matched (collocated) with a sample of radiance
observations/simulations, a statistical relationship is derived that predicts e.g.
atmospheric temperature from the measured radiance.

These tend to be limited by the statistical characteristics of the training sample / profile
library and will not produce physically important features if they are statistically rare in
the training sample. Furthermore, their assimilation can destroy sharp physical
features in the analysis!

The climatology used in the retrieval is a poorer estimate of the atmospheric state
(the weather) than a short-range forecast!

We do not want to assimilate this information.

ESA Summer School 2014 —M'EMWF



From Andersson et al (1991). Analysis increments and background,1000-700 hPa
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1DVAR retrievals and the cost function

It can be shown that the maximum likelihood approach to solving the inverse
problem requires the minimization of a cost function J which is a combination

of two distinct terms (NOTE: The mathematics is the same as 3/4DVAR). :

1D state or profile Radiance vector RT equation
|

| |
v

! !
J(X) =5 (X =X6) " B~ (X = %0) (Y, —HIX]) R™ (Y, —HIX]

Fit of the solution to the Fit of the solution to the measured
background estimate of the radiances (y) weighted inversely by
atmospheric state weighted the measurement error covariance
inversely by the background R (observation error + error in
error covariance B. observation operator H).

***|f background and observation errors are Gaussian, unbiased,

uncorrelated with each other; all error covariances are correctly specified,

ESA Summer School 2014 —‘ I lE‘ MWF



1DVAR retrievals continued ...

One simple linear form of the 1D-Var solution obtained by minimization of the
cost function is given by the expression:

Xa=Xo+[HB] [HBH' + R]*(y —Hxo)

Correction term, “increment”

The retrieved profile (x,) is equal to the background profile (x,) plus a
correction term applied. Furthermore we can quantify the error covariance S,
of the 1D-Var retrieval which is needed for subsequent assimilation:

S.= - [HB]'[HBH' +R]™ HB

a

Improvement term

The retrieval being an improvement over the background information
(assuming all parameters are correctly specified).

ESA Summer School 2014 —‘ I lE‘ MWF



ssure [mb)

Prassure (b

1DVAR retrievals continued...
The magnitude of the improvement over the background clearly depends

on a number of parameters, but one crucial factor is the number of
channels and shape of the weighting functions implied by the radiative

transfer operator H.
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Characteristics of 1DVAR retrievals

These have a number of advantages that make them more suitable for NWP
assimilation than other retrieval methods:

*The prior information (short-range forecast) is very accurate (more than
statistical climatology) which improves retrieval accuracy.

*The prior information contains information about physically important features
such as fronts, inversions and the tropopause.

*The error covariance of the prior information and resulting retrieval is better
known (crucial for the subsequent assimilation process).

*The 1DVAR may be considered an intermediate step towards the direct
assimilation of radiances.

BUT the error characteristics of the 1DVAR retrieval may still be very
complicated due to its correlation with the forecast background ...

Direct radiance assimilation
ESA Summer School 2014 _M‘ECMWF
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But do we really need explicit
retrievals for NWP?

4.) Direct radiance
assimilation

CCECMWF



Direct assimilation of radiances

Variational analysis methods such as 3DVAR and 4DVAR allow the direct
assimilation of radiance observations (without the need for an explicit retrieval
step).

This is because such methods do NOT require a linear relationship between the
observed quantity and the analysis variables.

The retrieval is essentially incorporated within the main analysis by finding the
3D or 4D state of the atmosphere that minimizes

J() =[x =) "B (x =) 4)(¥, ~HIX]) "R (Y, ~HIX])

4

‘ “Observation operator”
Atmospheric Vector of all H = radiative transfer equation
state vector observed data (+ NWP model integration in 4DVAR)
In direct radiance assimilation the forecast background still provides
the prior information to supplement the radiances, but it is not used
twice (as would be the case if 1D-Var retrievals were assimilated ).
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4DV AR data assimilation

T~

Ceorrrec e
[owerasl

Firowvious
torecast

Q7 12z 152 18z 21z tirme
i -
Assimilation window

Remember it is least squares! The forecast model is providing a curve that
we try to fit through the observations, by adjusting the state at the start of
the window.
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4DVAR
data assimilation
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Direct assimilation of radiances (Il)

By the direct assimilation of radiances we avoid the problem of
assimilating retrievals with complicated error structures.

BUT

There are still a number of significant problems that must be handled:

» Specifying the covariance (B) of background error statistics.

» Specifying the covariance (R) of radiance error statistics.

 Removing biases and ambiguities in the radiances / RT model.

> Some of these issues are simplified by the direct assimilation
of raw (unprocessed) radiance observations.
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Direct assimilation of raw radiances

Further to the move away from retrievals to radiance data,
most NWP centres are assimilating raw radiances (level-
1b/1c).

» Avoid complicated errors (random and systematic) introduced by
(unnecessary) pre-processing such as cloud clearing, angle (limb)
adjustment and surface corrections.

 Avoid having to change (retune) our assimilation system when the data
provider changes the pre-processing

 Faster access to data from new platforms (e.g. new data can be
assimilated weeks after launch)

 Allows consistent treatment of historical data for re-analysis projects
(ERA-40, ERA-Interim) and other climate studies
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Advantages of 4DVAR (or various flavours of it)

® Better use is made of observations far from the centre of
the assimilation time window (particularly important for
satellite data).

® The inversion of radiances is constrained by the
background and its error covariance, but also by the
forecast model’ s physics and dynamics.

® \Wind information can be retrieved from radiance data

through tracing effects:

- To fit the time and spatial evolution of humidity or ozone signals
in the radiance data, the 4DVAR has the choice of creating
constituents locally or advecting constituents from other areas.
The latter is achieved with wind adjustments.
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Wind adjustments from radiances in
4DVAR

 Assimilation of passive tracer information feeds back on wind field in a
single analysis cycle. Small adjustments also visible in mean wind field.
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Summary of key concepts

® Satellite data are extremely important in NWP.
® Data assimilation combines observations and a priori
iInformation in an optimal way and is analogous to the retrieval

inverse problem.
® Passive nadir sounders have the largest impact on NWP

forecast skill:

- Nadir sounders measure radiance (not T,Q or wind).

- Sounding radiances are broad vertical averages of the temperature
profile (defined by the weighting functions).

- The retrieval of atmospheric temperature from the radiances is ill-
posed and all retrieval algorithms use some sort of prior information.

- Most NWP centres assimilate raw radiances directly due to their
simpler error characteristics. 4DVAR is now widely used (or alternative
4 dimensional techniques).

® 4DVAR is a least squares. Don’t be too scared of the
maths.
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Key concepts (continued)

® NWP misused satellite data for many years — problems
identified in the 1980’s. Don’t make the same mistakes!

® Always be aware of the difference between a satellite
product/retrieval and the actual measurement.

- Satellites do not measure ... P,T,Q....

® If the retrieval problem is ill-posed (eg, y=x1+x2), then the
solution must depend on other information or
constraints (a priori) .

® How do errors in the a priori affect your product? Could
these error be the dominant error source in your work?
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