
Drought early warning

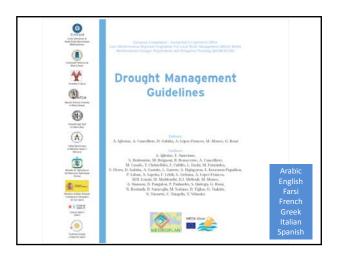
Ana Iglesias
Department of Agricultural Economics and Social
Sciences, Universidad Politécnica de Madrid, Spain

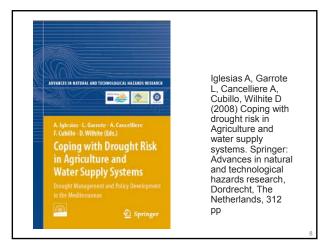
EO Summer School, Rome, 13 August 2014

Drought—a vision of the future

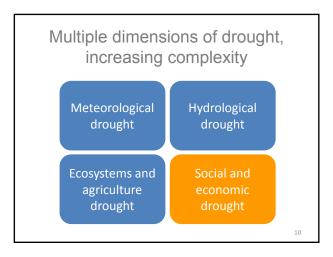
- Increased frequency and severity of meteorological droughts
- Increased impacts associated with increased vulnerability
- Combination of the two—increasing risk because of greater frequency of meteorological drought and increased vulnerability and greater impacts

Question

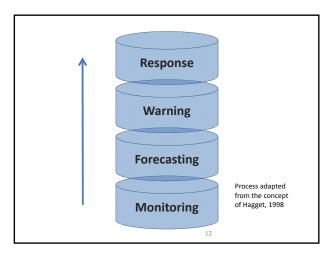

- Policy-makers often base their decisions on economic considerations; yet there seems to be a gap in the availability of economic evidence that drought preparedness is less costly than conventional emergency response.
- How can the assessment of socioeconomic consequences of drought be used to change this **perception** of drought preparedness?

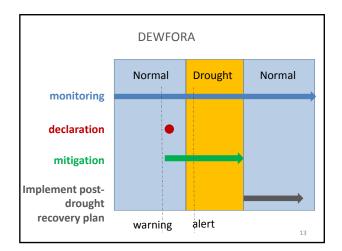

Imagine you have a forecast

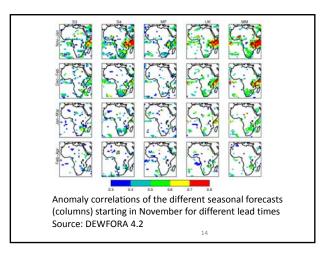
- What to do?
- How to do it?

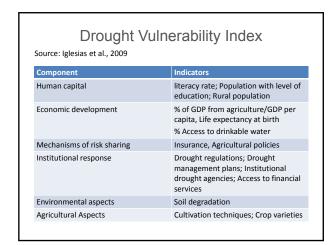

A range of overlapping phenomena that lead to different cultures of water management

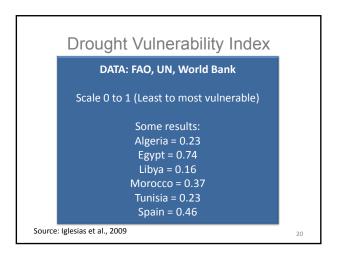
Water Scarcity Regime	Nature produced	Man induced
Temporary	Drought	Water shortage
Permanent	Aridity	Desertification

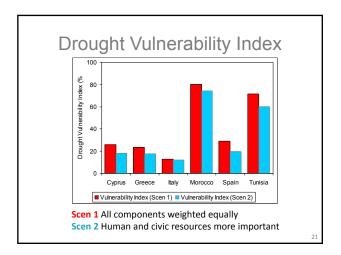


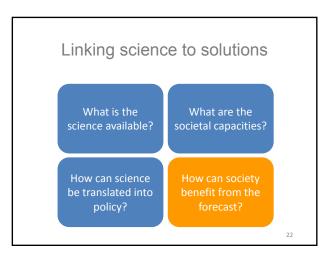




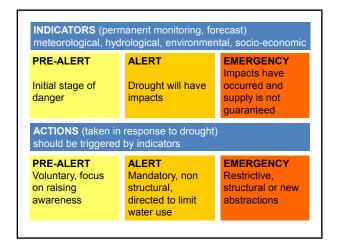



Meteorological	Description	Comments
index		
Percent of Normal Precipitation	percent of precip	+ simple, widely used, effective for comparing regions - precipitation distribution not normal
Deciles	deciles of precip	+ simple, widely used, accurate statistical - requires a long climatic data record Gibbs and Maher (1967)
Standardized Precipitation	based on probability of	+ widely used, may provide insight of hydrological drought
Index (SPI)	precip for a time scale widely used	- caution when precipitation does not have a normal distribution (McKee et al, 1993)
Palmer Drought Severity Index (PDSI)	includes soil moisture	+ widely used, very comprehensive, effective for agricultural drought - Lags emerging droughts, less well suited for complex topography, comparability Palmer (1965); Alley (1984)


Hydrological Index	Description	Comments
Palmer Hydrological Drought Index (PHDI)	based on moisture inflow, outflow, and storage	+ represents surface water supply and management (storage and irrigation) - formulation unique to each basin, does not take into account the long-term trend Karl and Knight (1985)
Surface Water Supply Index (SWSI)	developed from PHDI, accounts for snowpack	+ represents surface water supply and management (storage) - Formulation unique to each basin, does not take into account the long-term trend
Reclamation Drought Index (RDI)	based on temp, precip, snowpack, reservoir levels	+ accounts for evaporation - formulation unique to each basin Bureau of Reclamation (1988)
Water Exploitation Index (WEI)	ratio of water demand to total	+ allows priority setting and comparability - data intensive EEA (2009)


Agricultural Index	Description	Comments
Palmer Moisture Anomaly Index (Z-index)	Based on PDSI/ current moisture anomaly	+ responds quickly to changes in soil moisture, effective for agricultural drought - Complicated formulation Palmer (1965); Karl (1986)
Crop Moisture Index (CMI)	based on PDSI	+ identifies potential agricultural droughts in the short term - may not be a good long-term drought monitoring tool Palmer (1968)
Soil Moisture Anomaly Index	Precip and evapotransp.	+ characterise droughts on global basis, intermediate btw rapid CMI and slow PDSI - Difficult to calculate Bergman et al. (1988)
Normalised Diff. Vegetation Index (NDVI)	Veg. state from satellite images	+ widely used, vegetation health - technical and analytical difficulties, vegetation health not only due to drought

ndicator Social	Description	Comments
Drought Vulnerability Index	based on Human Development Index	+ comprehensive, includes underlying causes of drought damage to society - data at administrative level, social assumptions difficult to convey Iglesias et al (2009)
Socio- economic drought vulnerability index	based on World Bank Indicators	+ includes considerations of potential social alternatives - data at administrative level, social assumptions difficult to convey IWMI (2009)



Operational component

Defines the strategy and the measures

Measures
to be implemented during drought

Implementation of drought policy

 Australia: One level (Exceptional Circumstances)

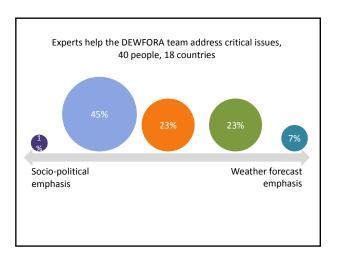
■ Spain: 3 levels

USA: from 2 to 5 levels

25

Selecting the actions

- 1. Establishing priorities
- 2. Management objectives
- 3. Defining thresholds
- 4. Defining actions


Shortcomings of DEWS

- Data networks
- Data sharing
- Early warning system products
- Drought forecasts
- Drought monitoring tools
- Integrated drought/climate/water supply monitoring
- Impact assessment methodologies
- Delivery systems
- Global early warning systems

A wish list

- More reliable seasonal forecasts
- More reliable and timely water impact assessments
- Higher resolution analysis of policy support

28

