Drought early warning Ana Iglesias Department of Agricultural Economics and Social Sciences, Universidad Politécnica de Madrid, Spain EO Summer School, Rome, 13 August 2014 ## Drought—a vision of the future - Increased frequency and severity of meteorological droughts - Increased impacts associated with increased vulnerability - Combination of the two—increasing risk because of greater frequency of meteorological drought and increased vulnerability and greater impacts #### Question - Policy-makers often base their decisions on economic considerations; yet there seems to be a gap in the availability of economic evidence that drought preparedness is less costly than conventional emergency response. - How can the assessment of socioeconomic consequences of drought be used to change this **perception** of drought preparedness? Imagine you have a forecast - What to do? - How to do it? A range of overlapping phenomena that lead to different cultures of water management | Water Scarcity
Regime | Nature
produced | Man induced | |--------------------------|--------------------|-----------------| | Temporary | Drought | Water shortage | | Permanent | Aridity | Desertification | | Meteorological | Description | Comments | |--|---|--| | index | | | | Percent of
Normal
Precipitation | percent of precip | + simple, widely used, effective for comparing regions - precipitation distribution not normal | | Deciles | deciles of precip | + simple, widely used, accurate statistical
- requires a long climatic data record
Gibbs and Maher (1967) | | Standardized
Precipitation | based on probability of | + widely used, may provide insight of hydrological drought | | Index (SPI) | precip for a
time scale
widely used | - caution when precipitation does not have
a normal distribution
(McKee et al, 1993) | | Palmer Drought
Severity Index
(PDSI) | includes soil
moisture | + widely used, very comprehensive,
effective for agricultural drought
- Lags emerging droughts, less well suited
for complex topography, comparability
Palmer (1965); Alley (1984) | | Hydrological
Index | Description | Comments | |---|--|---| | Palmer
Hydrological
Drought Index
(PHDI) | based on
moisture
inflow,
outflow, and
storage | + represents surface water supply and
management (storage and irrigation)
- formulation unique to each basin, does
not take into account the long-term trend
Karl and Knight (1985) | | Surface Water
Supply Index
(SWSI) | developed
from PHDI,
accounts for
snowpack | + represents surface water supply and
management (storage)
- Formulation unique to each basin, does
not take into account the long-term trend | | Reclamation
Drought Index
(RDI) | based on
temp, precip,
snowpack,
reservoir levels | + accounts for evaporation
- formulation unique to each basin
Bureau of Reclamation (1988) | | Water
Exploitation
Index (WEI) | ratio of water
demand to
total | + allows priority setting and comparability
- data intensive
EEA (2009) | | Agricultural Index | Description | Comments | |--|--|--| | Palmer Moisture
Anomaly Index
(Z-index) | Based on PDSI/
current
moisture
anomaly | + responds quickly to changes in soil
moisture, effective for agricultural drought
- Complicated formulation
Palmer (1965); Karl (1986) | | Crop Moisture
Index (CMI) | based on PDSI | + identifies potential agricultural droughts
in the short term
- may not be a good long-term drought
monitoring tool
Palmer (1968) | | Soil Moisture
Anomaly Index | Precip and evapotransp. | + characterise droughts on global basis,
intermediate btw rapid CMI and slow PDSI
- Difficult to calculate
Bergman et al. (1988) | | Normalised Diff.
Vegetation
Index (NDVI) | Veg. state from satellite images | + widely used, vegetation health - technical and analytical difficulties, vegetation health not only due to drought | | ndicator
Social | Description | Comments | |---|---|---| | Drought
Vulnerability
Index | based on
Human
Development
Index | + comprehensive, includes underlying
causes of drought damage to society
- data at administrative level, social
assumptions difficult to convey
Iglesias et al (2009) | | Socio-
economic
drought
vulnerability
index | based on World
Bank Indicators | + includes considerations of potential social alternatives - data at administrative level, social assumptions difficult to convey IWMI (2009) | Operational component Defines the strategy and the measures Measures to be implemented during drought ## Implementation of drought policy Australia: One level (Exceptional Circumstances) ■ Spain: 3 levels USA: from 2 to 5 levels 25 ## Selecting the actions - 1. Establishing priorities - 2. Management objectives - 3. Defining thresholds - 4. Defining actions # Shortcomings of DEWS - Data networks - Data sharing - Early warning system products - Drought forecasts - Drought monitoring tools - Integrated drought/climate/water supply monitoring - Impact assessment methodologies - Delivery systems - Global early warning systems ### A wish list - More reliable seasonal forecasts - More reliable and timely water impact assessments - Higher resolution analysis of policy support 28