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Topics of todays lecture

Example what a good prior could do
Uncertainty and error characterization:

e random errors
e systematic errors
e uncertainties in model selection

Analysing retrievals: residuals and y?2
Validating operational retrievals using MCMC
Examples in atmospheric remote sensing
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Vertical inversion

The vertical inversion is the problem

N;™ =/Pg“(2(8))ds, t=t,....lw.
t

for the gas profiles p#*(Z). By discretizing the atmosphere into
layers the problem can be solved separately for each gas as a
linear inversion problem

NES — Apes, NEs = (NESY, £=¢4,...,Cn



In so called Onion peeling formulation
local spherical symmetry of the
atmosphere is assumed.

The matrix A contains the lengths of the
line of sight in the layers and depends on
the discretization. In the operational
retrieval the discretization is fixed so that
the number of layers is the same as the
number of measurement lines in each
occultation.

aiy
2ax1  ax
A= |2a3 2azx as
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Tikhonov regularization - smoothness prior

In the case of GOMOS, the direct inversion produces vertical profiles
accompanied with unphysical oscillations. In order to remove these,
the inversion is performed using the Tikhonov regularization method.
The classical Tikhonov regularized solution of the problem is a
minimizer of the functional:

F(u) = I1Ap — NII2 + ul Hp|? (1)

Here u is the regularization parameter.

A modified version of Tikhonov regularization with smooth second
derivatives is applied in GOMOS retrieval. The regularisation matrix
His

0 0 0 .. 0
’ 1 21 .. 0
H = diag |:—2] e e (2)
hs 0 .. 1 -2 1
0 0 .. 0 O

where h; denotes local altitude differences.

Note: Tikhonov regularization can be seen as Bayesian solution
resulting the MAP estimate given the data and a prior described by u
and H.

46



Vertical inversion cont.

The Tikhonov regularized solution of is given by
p=ATA+ uHTH)'ATN (3)

Since the problem is linear and the noise is assumed to be
Gaussian the posterior covariance matrix is obtained by
standard matrix computation:

C,=LCyLT

where L denotes the retrieval matrix p = LN.



Example: GOMOS vertical inversion — prior

information

e PRIOR 1: Flat
(non-informative prior).
Retrieval - blue circles.

e PRIOR 2: Based on earlier
measurements it has been
found that the vertical profiles
ozone themself vary, but they
are rather smooth. Retrieval -
blue solid line and gray area
around it.

e Retrieval using PRIOR 2
results in ozone profile which
corresponds well to
independent ozone sounding
measurements (red dashed
line)

altitude (km)

3o

281

26

241

n
N

20

RO3609 S007 8-11-2002

o

95% posterior limits
posterior mean

GOMOS measurement | |
Sodankyl sonde




Uncertainties in practice
e Random errors

caused by measurement noise through error propagation
caused by random features not modeled correctly
typically considered as ’easy’ errors as they cancel out
when a lot of measurements are averaged

e Systematic errors

assumptions

approximations

simplifications in modeling

model uncertainty

Typically condered as ‘difficult’ errors since they can cause
bias in the data.

However, if only trends are studied, (small) stable
systematic errors may not be crucial

e Mixtures of random and systematic errors

e Both random and systematic errors can depend on
geographical conditions, measurement geometry, solar
angles, ...
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Uncertainties in practice (cont.)

e Time evolution in errors

e Aging of the instrument: measurement noise typically
increasing

e Particularly important in remote sensing since calibration
more complicated

 Drifting orbit may cause changes in errors.



Aging of the instrument - example
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Due to GOMOS instrument aging the measurement noise is
increasing. The aging is seen in the error estimates
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Example: uncertainties in GOMOS data

¢ Random errors:
e Measurement noise
e Uncorrected scintillations
e Systematic errors:
e Uncertainties in aerosol modeling
e Uncertainties in cross sections
o Uncertainty in temperature and neutral density
e Uncertainties in ray tracing

11/46



Methods of studying the uncertainties and validating
the error estimates
e Error propagation
e Analysing residuals

e Analysing 2 values
e Non-linearity can be studied using MCMC

o Off line sensitivity studies: simulations using varying
assumptions or initial conditions.

o Off line processing with detailed forward model.

o Off line processing with extendid inversion: characterizing
modeling uncertainties in the retrievals

e Geophysical validation - comparison with independent
measurements
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Useful diagnostics: analysing residuals and y?2

e Residual: (fi(x) — y;) should be of the same size as the noise.

It should not show systematic behaviour if noncorrelated noise
is assumed.

o 2= (f(x)—y)C,"(f(x) — y)" should be ~ 1 in close to
Gaussian case.
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Example of GOMOS residuals and 2 in old Version 5 processing. Note high
values of Xz and systematic features in residuals.
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Interesting finding: Small scale structures in the
atmosphere

vertical occultation oblique occultation

Figure by V. Sofieva (FMI) 4as



Correlated modeling error

e In GOMOS version 6 Spectral inversion correlated modeling
error Cp, was included:

C, = C, + Cn

where C, was diagonal and C,, band matrix describing the
modeling error and its correlation in wavelength.
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Useful diagnostics: analysing residuals and y?2

e The retrieval become much slower but error characterization
was improved.
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GOMOS validation: operational vs MCMC

Motivation

o Validate the assumption of solution to be close to Gaussian
 Different prior and noise structures can be easily included
o Studying different a priori information (positivity priors:
nonsymmetric posteriors)
o Example with noisy data, outliers: estimation with robust ¢4

norm may yield to a more stable results (example
yesterday).

e Modelling errors:

¢ Include in the retrieval as nuisance parameters: wider
posteriors
¢ Model selection
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Examples of sampled posterior distribution
e MCMC sampling in ~5 dimensional space in GOMOS
spectral inversion. Unknowns: horizontal densities of O3, NO2,
NO3, aerosols, (neutral density)

e Visually we can analyse 2-dimensional marginal distributions
and their correlations.
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How Gaussian is the posterior distribution?

e The posterior distribution of GOMOS Spectral inversion
computed with MCMC and the Gaussian estimate (point
estimate and covariance matrix) computed using operational
Levenberg-Marquard algorithm practically coincide if no
additional information is used.
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Positivity prior

Aerosol line-of-sight density (x 10° cm‘z)

3 35 4
Air line-of-sight density (x 102 cm’Z)

e Assuming positivity:
exp(—% Zfl\:1 (Ta(’\‘/s)f—ﬂ)z) if N/ -0
otherwise

e Without constraints some gases may get too small (negative),
others too large values.

e True nonsymmetric posteriors easily by MCMC.

P(Ny) o
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Positivity prior cont.
e Improvement in ozone retrieval when positivity prior
introduced.

Alitude (km)
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Positivity prior cont.

o Unrealistic aerosol density causes bias for other constituents.

0a (10'%em™)

NOZ (10"7em™)
o

10

2

NO2 (10'7em ™)

0

IS

NO3 (10'%m ™)
o wm

NOa (10"em ™)

0

Air (10%m™%)
e
g -
=

0.
Air (10%em )
5
5| e - — S
7 a 0 1 2 -5 a 5 08 1 12

Figure 6. Two-cimensionsl marginal pesterior distrbutions, l'mm lch 1o right, line-of-sight densities
of: Oy, NO;, NOy and air and from tep to bottom: NO;, d aeroscls. The comtour curves
denate 68.3 and 05 % probability regions. Cray contonrs Chowe i reult withart any prior knowledge
and black contours assuming pesitivity. GOMOS measurement at 35 km, dim star.
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Modelling error: uncertainty in temperature

Alitude (km)

— Operat. algorithm
- - Temperature fitted

04 0s
Error estimate (%)

e Uncertainties in
temperature: use
tempereture as a nuisance
parameter b, sample

p(x, b| y) to obtain:

p(xly) = / p(x. bl y)p(bY)b.

e The error estimates of
ozone are clearly increased
by assuming uncertainty in
temperature (Gaussian with
2 K deviation)
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Modelling errors: aerosol size distribution
Simple aerosol model:
Taero (/1) aero Gaero (’1)

where azero(1) = ag/A”? and a choice ag =3 x 10~ 7cm?, g = 1
is applied

Including uncertainty about Angstrom coefficient to
transmission model:

n of gases
Tﬂ(Nvﬁ):eXp( aero ,5 Z Najl)

Jj=1

] e Uncertainty modelled again
s | using nuisance parameter.
e Uncertainty of aerosol
cross sections increases in
particular the uncertainty of

aerosol optical depth.

sol optical depth

Aeros
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Sensitivity study related to GOMOS aerosol model

O3 relative difference
40

e Uncertainty in modeling
wavelength dependence of
aerosols (related to aerosol type)

e Sensitivity stydy performed for a
test data set of about 1000
occultations made at different
geographical locations using seven
different aerosol models.

Altitude (km)

e Averaged ozone profiles show
that there is a large systematic
difference in the ozone profiles
depending on the aerosol model
used (up to 10-30%) below 20 km.
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Arctic ozone depleation in 2011: ozone measured by
OMI/Aura and GOMOS/Envisat

26/46



Example: improving ozone at low altitudes

e Introducing smoothnes prior to aerosols. Application of
‘one-step’ algorithm (together spectral and vertical inversion).

Altitude [km]
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Median ozone 26.3.-2.4.2011
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Operative algorithm
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Improved UTLS-algorithm
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Variants of Adaptive Metropolis MCMC algorithm

Variants of AM

e SCAM: Single component AM algorithm (Haario et. al 2004)
e High dimensions!

o DRAM: Delayed rejection AM algorithm (Haario et al. 2006)
¢ Robust adaptation!

e AARJ: Adaptive Automatic Reversible Jump MCMC (Laine
and Tamminen, 2009)

e Practical model selection!
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SCAM algorithm

e Single component AM algorithm

The i:th coordinate X/ (i =1, ..., d) of the t:th state X; is
obtained by 1-dimensional Metropolis step:

Step 1: Sample y’ from 1-dimensional normally distributed
proposal distribution g; centered at X[_1 with variance C[. After
an initial period,

C{ = sy Var(X], . ..,X[_1) + Sqe.

Step 2: Accept the candidate point y’ with probability

e n(xu...,x,"—f,z",x;'j;,...,xtd_1)
X, XU X Xxd )y )

in which case set X/ = y/, otherwise X/ = X/_,.
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High-dimensional one-step inversion with MCMC:
SCAM

e Free of restrictive assumptions on model or data

e A direct solution for the gas profiles leads to a problem with
70000—-140000 measurements and 250-500 unknowns.

e AM converges slowly in high dimensional problems, but
Single component adaptive Metropolis algorithm (SCAM)
works well.

e SCAM combines the ideas of componentwise sampling
(Gibbs sampling) and AM algorithm
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SCAM applied to GOMOS ’one-step’ problem

(simultaneus spectral and vertical inversion
e Test case: dimension of the problem 90.

e Full view of the correlations of btw gases and altitudes.
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...Back to uncertainty of GOMOS aerosol model

O3 relative difference
40

Altitude (km)
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Model selection

e |t is also possible that we do not know which model is
correct/best
e In such a case we need to perform model selection

¢ It would be good if the model selection could be done
simultaneusly with solving the inverse problem.

e Bayesian model selection can be applied using eg. MCMC
algorithms called Reversible jump MCMC (Ref. Green 1995)
which jumps between different models
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MCMC method for model selection |

Model selection using automatic adaptive Reversible Jump MCMC (AARJ)
(ref. Laine and Tamminen 2009).

e AARJ = Automatic RUIMCMC by
Green (2003, 1995) with AM
style adaptation.

Model 2

Model 1

e Uses Gaussian approximations
of the target distributions to
perform model to model
parameter transformations.

Model 3

e

e Both the target approximations
and proposal covariances are
adapted.

e First approximations by initial
runs.

Suitable for model selection and model averaging problems with 2-10
competing models.
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Aerosol model selection in GOMQOS retrieval

e Four different aerosol models considered:
1. a(d) = aghwet/2A
2. a(d) =ao+ a1(A — Aet) + 82(4 — Are)?
3. a(l) = apl2;/i?

4 a() =ao+ar(1/2—1/dwet) + 82(1/4 =1/ 4ser)?

The model is parameterized so that constant term ay gives the
optical extinction when A, = 500 nm and parameters a; and a.
correspond to wavelengths 11 = 300 nm and 1, = 600 nm.

e Simultaneusly as the horizontal has densities are fitted also
different aerosol models are sampled.

e MCMC sampling now done in 4 different state spaces (with
different dimensons).
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RJMCMC chains and model probabilities

Four different aerosol models fitted with AARJ algorithm.

x 10%° NO2

model probabilities
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1d Posterior distributions

— averaged model
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Predictive distributions of the wavelength dependence
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Models and their posterior uncertainty.
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Posterior probability at different heights

posterior probabiliities of the four aerosol models
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Aerosol model selection in OMI

Aura/OMI - 04/15/2010 11:58-12:04 UT - Orbit 30584

e OMI - Ozone Monitoring
Instrument

e Dutch-Finnish Instrument
onboard NASA’s EOS-Aura & %
Satellite, launced in 2004. OMI ash (AAI) 15 4.2010

Aura/OMI - 04/15/2010 11:58-12:04 UT - Orbit 30584

e ESA third party mission a

e UV-VIS instrument measures:
03, NO2, SO2, aerosols,
UV-radiation, ...

e Global coverage in one-two days

OMI SOz 15 4. 2010
e Pixel size at nadir 24x13 km. -

00 02 04 08 08 10 12 14 18 18 20

Fig. by NASA
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Aerosol model selection in OMI

Orbit: 16415, lat: 37.0877, lon: 22.9057, 16-Aug-2007

e Different models give
different optical depth
values

e The mean value is
multimodal.

e It looks like the
errors do not correctly
reflect the uncertainty
in the data.

Reflectance
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Aerosol model selection in OMI

Orbit: 16415, lat: 37.0877, lon: 22.9057, 16-Aug-2007

e The model
discrepancy can be
taken into account
using Gaussian

processes.
e Results look more

reaIiStiC- Mean Value 0 Orbit: 16415, lat: 37.0877, lon: 22.9057, 16-Aug-2007
wide and unimodal.

0.45H] H

e The agreement with
models seem to reflect
the uncertainty in the
data.

Reflectance
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(From A. Maatta et al., in preparation 2012)

42/46



Summary: Uncertainties in remote sensing

Large amounts of data and complex models

e Important to understand and characterize uncertainties:
e The users of the data need to know the uncertainties.
e Possibility to improve the retrievals
¢ We may learn new things
e Bayesian approach gives natural tools to characterize
uncertainties.
e Tools: Analysing retrievals, sensitivity analysis, alternative
retrievals, full modeling of uncertainties using off line
models, geophysical validation.

e MCMC is one option for helping in uncertainty
quantification.
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