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Topics of todays lecture

• Example what a good prior could do
• Uncertainty and error characterization:

• random errors
• systematic errors
• uncertainties in model selection

• Analysing retrievals: residuals and χ2

• Validating operational retrievals using MCMC
• Examples in atmospheric remote sensing
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Vertical inversion

The vertical inversion is the problem

Ngas
` =

∫
`

ρgas(z(s))ds, ` = `1, . . . , `M .

for the gas profiles ρgas(z). By discretizing the atmosphere into
layers the problem can be solved separately for each gas as a
linear inversion problem

Ngas
= Aρgas, Ngas

= (Ngas
` ), ` = `1, . . . , `M
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In so called Onion peeling formulation
local spherical symmetry of the
atmosphere is assumed.

The matrix A contains the lengths of the
line of sight in the layers and depends on
the discretization. In the operational
retrieval the discretization is fixed so that
the number of layers is the same as the
number of measurement lines in each
occultation.

A =


a11

2a21 a22

2a31 2a32 a33

. . .


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Tikhonov regularization - smoothness prior
In the case of GOMOS, the direct inversion produces vertical profiles
accompanied with unphysical oscillations. In order to remove these,
the inversion is performed using the Tikhonov regularization method.
The classical Tikhonov regularized solution of the problem is a
minimizer of the functional:

F (µ) = ‖Aρ − N‖2 + µ‖Hρ‖2 (1)

Here µ is the regularization parameter.
A modified version of Tikhonov regularization with smooth second
derivatives is applied in GOMOS retrieval. The regularisation matrix
H is

H = diag

[
1
h2

i

]
0 0 0 ... 0
1 -2 1 ... 0
... .. ... ... ...
0 ... 1 -2 1
0 0 ... 0 0

 (2)

where hi denotes local altitude differences.
Note: Tikhonov regularization can be seen as Bayesian solution
resulting the MAP estimate given the data and a prior described by µ
and H.
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Vertical inversion cont.

The Tikhonov regularized solution of is given by

ρ̂ = (AT A+ µHT H)−1AT N (3)

Since the problem is linear and the noise is assumed to be
Gaussian the posterior covariance matrix is obtained by
standard matrix computation:

Cρ = LCNLT

where L denotes the retrieval matrix ρ̂ = LN.
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Example: GOMOS vertical inversion – prior
information
• PRIOR 1: Flat
(non-informative prior).
Retrieval - blue circles.
• PRIOR 2: Based on earlier
measurements it has been
found that the vertical profiles
ozone themself vary, but they
are rather smooth. Retrieval -
blue solid line and gray area
around it.
• Retrieval using PRIOR 2
results in ozone profile which
corresponds well to
independent ozone sounding
measurements (red dashed
line)

7 / 46



Uncertainties in practice
• Random errors

• caused by measurement noise through error propagation
• caused by random features not modeled correctly
• typically considered as ’easy’ errors as they cancel out

when a lot of measurements are averaged
• Systematic errors

• assumptions
• approximations
• simplifications in modeling
• model uncertainty
• Typically condered as ’difficult’ errors since they can cause

bias in the data.
• However, if only trends are studied, (small) stable

systematic errors may not be crucial
• Mixtures of random and systematic errors
• Both random and systematic errors can depend on

geographical conditions, measurement geometry, solar
angles, ...
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Uncertainties in practice (cont.)

• Time evolution in errors

• Aging of the instrument: measurement noise typically
increasing

• Particularly important in remote sensing since calibration
more complicated

• Drifting orbit may cause changes in errors.
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Aging of the instrument - example

Due to GOMOS instrument aging the measurement noise is
increasing. The aging is seen in the error estimates
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Example: uncertainties in GOMOS data

• Random errors:
• Measurement noise
• Uncorrected scintillations

• Systematic errors:
• Uncertainties in aerosol modeling
• Uncertainties in cross sections
• Uncertainty in temperature and neutral density
• Uncertainties in ray tracing
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Methods of studying the uncertainties and validating
the error estimates

• Error propagation
• Analysing residuals
• Analysing χ2 values
• Non-linearity can be studied using MCMC

• Off line sensitivity studies: simulations using varying
assumptions or initial conditions.

• Off line processing with detailed forward model.

• Off line processing with extendid inversion: characterizing
modeling uncertainties in the retrievals

• Geophysical validation - comparison with independent
measurements
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Useful diagnostics: analysing residuals and χ2

• Residual: (fi(x)− yi) should be of the same size as the noise.
It should not show systematic behaviour if noncorrelated noise
is assumed.
• χ2

= (f (x)− y)C−1
y (f (x)− y)T should be ∼ 1 in close to

Gaussian case.

Example of GOMOS residuals and χ2 in old Version 5 processing. Note high
values of χ2 and systematic features in residuals.
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Interesting finding: Small scale structures in the
atmosphere

Figure by V. Sofieva (FMI)
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Correlated modeling error
• In GOMOS version 6 Spectral inversion correlated modeling
error Cm was included:

Cy := Cy + Cm

where Cy was diagonal and Cm band matrix describing the
modeling error and its correlation in wavelength.

15 / 46



Useful diagnostics: analysing residuals and χ2

• The retrieval become much slower but error characterization
was improved.
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GOMOS validation: operational vs MCMC

Motivation
• Validate the assumption of solution to be close to Gaussian
• Different prior and noise structures can be easily included

• Studying different a priori information (positivity priors:
nonsymmetric posteriors)

• Example with noisy data, outliers: estimation with robust `1
norm may yield to a more stable results (example
yesterday).

• Modelling errors:
• Include in the retrieval as nuisance parameters: wider

posteriors
• Model selection
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Examples of sampled posterior distribution
• MCMC sampling in ∼5 dimensional space in GOMOS
spectral inversion. Unknowns: horizontal densities of O3, NO2,
NO3, aerosols, (neutral density)

• Visually we can analyse 2-dimensional marginal distributions
and their correlations.
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How Gaussian is the posterior distribution?

• The posterior distribution of GOMOS Spectral inversion
computed with MCMC and the Gaussian estimate (point
estimate and covariance matrix) computed using operational
Levenberg-Marquard algorithm practically coincide if no
additional information is used.
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Positivity prior
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• Assuming positivity:

p(N | y) ∝

{
exp(−1

2

∑3
λ=1

(Tλ(N)−yλ)2

s2
λ

) if Nj > 0

0 otherwise
.

•Without constraints some gases may get too small (negative),
others too large values.
• True nonsymmetric posteriors easily by MCMC.
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Positivity prior cont.
• Improvement in ozone retrieval when positivity prior
introduced.
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Positivity prior cont.
• Unrealistic aerosol density causes bias for other constituents.
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Modelling error: uncertainty in temperature
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• Uncertainties in
temperature: use
tempereture as a nuisance
parameter b, sample
p(x,b | y) to obtain:

p(x | y) =
∫

p(x,b | y)p(b | y)b.

• The error estimates of
ozone are clearly increased
by assuming uncertainty in
temperature (Gaussian with
2 K deviation)
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Modelling errors: aerosol size distribution
Simple aerosol model:

τaero(λ) = Naeroαaero(λ).

where αaero(λ) = α0/λ
β and a choice α0 = 3× 10−7cm2, β = 1

is applied
Including uncertainty about Angstrom coefficient to
transmission model:

Tλ(N, β) = exp

(
−Naero

α0

λ
β
λ

−

n of gases∑
j=1

Njαj,λ

)
.
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• Uncertainty modelled again
using nuisance parameter.
• Uncertainty of aerosol
cross sections increases in
particular the uncertainty of
aerosol optical depth.
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Sensitivity study related to GOMOS aerosol model

• Uncertainty in modeling
wavelength dependence of
aerosols (related to aerosol type)

• Sensitivity stydy performed for a
test data set of about 1000
occultations made at different
geographical locations using seven
different aerosol models.

• Averaged ozone profiles show
that there is a large systematic
difference in the ozone profiles
depending on the aerosol model
used (up to 10-30%) below 20 km.
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Arctic ozone depleation in 2011: ozone measured by
OMI/Aura and GOMOS/Envisat
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Example: improving ozone at low altitudes

• Introducing smoothnes prior to aerosols. Application of
’one-step’ algorithm (together spectral and vertical inversion).
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Variants of Adaptive Metropolis MCMC algorithm

Variants of AM

• SCAM: Single component AM algorithm (Haario et. al 2004)
• High dimensions!

• DRAM: Delayed rejection AM algorithm (Haario et al. 2006)
• Robust adaptation!

• AARJ: Adaptive Automatic Reversible Jump MCMC (Laine
and Tamminen, 2009)
• Practical model selection!
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SCAM algorithm

• Single component AM algorithm
The i :th coordinate X i

t (i = 1, . . . ,d) of the t :th state Xt is
obtained by 1-dimensional Metropolis step:
Step 1: Sample y i from 1-dimensional normally distributed
proposal distribution qt centered at X i

t−1 with variance C i
t . After

an initial period,

C i
t = s1Var(X i

0, . . . ,X
i
t−1)+ s1ε.

Step 2: Accept the candidate point y i with probability

min

(
1,
π(X 1

t , . . . ,X
i−1
t , z i ,X i+1

t−1 , . . . ,X
d
t−1)

π(X 1
t , . . . ,X

i−1
t ,X i

t−1, . . . ,X
d
t−1)

)
,

in which case set X i
t = y i , otherwise X i

t = X i
t−1.
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High-dimensional one-step inversion with MCMC:
SCAM

• Free of restrictive assumptions on model or data
• A direct solution for the gas profiles leads to a problem with

70000–140000 measurements and 250–500 unknowns.
• AM converges slowly in high dimensional problems, but

Single component adaptive Metropolis algorithm (SCAM)
works well.
• SCAM combines the ideas of componentwise sampling

(Gibbs sampling) and AM algorithm
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SCAM applied to GOMOS ’one-step’ problem
(simultaneus spectral and vertical inversion
• Test case: dimension of the problem 90.

• Full view of the correlations of btw gases and altitudes.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Air (1−30) (low−high)

Ozone (31−60)

Aerosol (61−90)

Fig. Correlation coefficients of the error structure by ’one-step’
inversion and SCAM.

31 / 46



...Back to uncertainty of GOMOS aerosol model
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Model selection

• It is also possible that we do not know which model is
correct/best
• In such a case we need to perform model selection
• It would be good if the model selection could be done

simultaneusly with solving the inverse problem.

• Bayesian model selection can be applied using eg. MCMC
algorithms called Reversible jump MCMC (Ref. Green 1995)
which jumps between different models
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MCMC method for model selection I

Model selection using automatic adaptive Reversible Jump MCMC (AARJ)
(ref. Laine and Tamminen 2009).

• AARJ = Automatic RJMCMC by
Green (2003, 1995) with AM
style adaptation.

• Uses Gaussian approximations
of the target distributions to
perform model to model
parameter transformations.

• Both the target approximations
and proposal covariances are
adapted.

• First approximations by initial
runs.

Model 1 Model 2

 

 
95% contour of the target
Gaussian approximation

Model 3

 

 
target density
Gaussian approximation

Suitable for model selection and model averaging problems with 2-10
competing models.
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Aerosol model selection in GOMOS retrieval

• Four different aerosol models considered:
1. α(λ) = a0λref/λ

2. α(λ) = a0 + ã1(λ− λref)+ ã2(λ− λref)
2

3. α(λ) = a0λ
2
ref/λ

2

4. α(λ) = a0 + ã1(1/λ− 1/λref)+ ã2(1/λ− 1/λref)
2

The model is parameterized so that constant term a0 gives the
optical extinction when λref = 500 nm and parameters a1 and a2

correspond to wavelengths λ1 = 300 nm and λ2 = 600 nm.

• Simultaneusly as the horizontal has densities are fitted also
different aerosol models are sampled.

• MCMC sampling now done in 4 different state spaces (with
different dimensons).
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RJMCMC chains and model probabilities
Four different aerosol models fitted with AARJ algorithm.
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1d Posterior distributions
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Predictive distributions of the wavelength dependence
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Posterior probability at different heights
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Aerosol model selection in OMI

• OMI - Ozone Monitoring
Instrument

• Dutch-Finnish Instrument
onboard NASA’s EOS-Aura
Satellite, launced in 2004.

• ESA third party mission

• UV-VIS instrument measures:
O3, NO2, SO2, aerosols,
UV-radiation, ...

• Global coverage in one-two days

• Pixel size at nadir 24×13 km.

Fig. by NASA
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Aerosol model selection in OMI

• Different models give
different optical depth
values

• The mean value is
multimodal.

• It looks like the
errors do not correctly
reflect the uncertainty
in the data.
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Aerosol model selection in OMI

• The model
discrepancy can be
taken into account
using Gaussian
processes.

• Results look more
realistic. Mean value
wide and unimodal.

• The agreement with
models seem to reflect
the uncertainty in the
data.
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Summary: Uncertainties in remote sensing

Large amounts of data and complex models

• Important to understand and characterize uncertainties:
• The users of the data need to know the uncertainties.
• Possibility to improve the retrievals
• We may learn new things

• Bayesian approach gives natural tools to characterize
uncertainties.
• Tools: Analysing retrievals, sensitivity analysis, alternative

retrievals, full modeling of uncertainties using off line
models, geophysical validation.
• MCMC is one option for helping in uncertainty

quantification.
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