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Markov chain Monte Carlo method (with applications
to atmospheric remote sensing)

Contents of this lecture

• Nonlinear inverse problems
• Introduction to Markov chain Monte Carlo
• Implementing MCMC in practice: adaptive Metropolis

algorithm
• Examples of applying MCMC to atmospheric remote

sensing
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Solving nonlinear problems

• Posterior distribution

π(x) = p(x | y) =
plh(y | x)ppr(x)∫
plh(y | x)ppr(x)dx

.

can be evaluated pointwise up to the normalizing constant

π(x) ∝ plh(y | x)ppr(x).

• MAP estimate gives an estimate of ’most probable’ value.

• Note notation from now on: we denote with π both the target
(posterior) distribution and its pdf.
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• What we typically also need is:
• expectation, mean
• covariance matrix
• probability regions (e.g., 90%)
• how probably x ∈ A?

• In general case these require
integration with respect to the posterior
distribution:

IE(f (x)) =
∫

f (x)π(x)dx
Examples of (scaled) probablity
regions in GOMOS retrievals
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As discussed yesterday, typical ways of solving non-linear
problems in practice include

• Linearizing the problem

• Assuming ’close to Gaussian’ structure at the estimate

• Iterative finding of the solution
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Exploring the posterior vs. optimizing

Figure by Erkki Kyrölä (FMI)
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What if my posterior distribution is like this?
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• In this case
Gaussian posterior
distribution (mean and
covariance) is not a
good approximation.

7 / 45



Computation of the posterior distribution
• Systematic exploration of the posterior distribution

• Typically very time consuming and practically impossible in
large dimensons

• Monte Carlo integration
• Sample randomly X1, . . . ,XN from the posterior distribution
• When samples are independent and identically distributed

law of large numbers holds

IE(f (x)) =
∫

f (x)π(x)dx ≈
1
N

N∑
t=1

f (Xt )

• To study the posterior distribution it requires normally

computation of p(y) =
∫

plh(y | x)ppr(x)dx

• it means that the whole space of possible x values needs to
be sampled

• Many variations exist how to make the sampling
• One of the methods is

Markov chain Monte Carlo (MCMC) - topic of this lecture
8 / 45



Law of Large numbers (LLN)

• LLN says that sample average converges towards the
expectation

1
N

N∑
t=1

Xt −→ IE(X ) when N −→∞

• When LLN holds, we can approximate expectation with
sample mean:

IE(f (x)) =
∫

f (x)π(x)dx ≈
1
N

N∑
t=1

f (Xt)
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Markov chain Monte Carlo technique

• MCMC is based on sampling points Xt which are ’cleverly’
selected

• In MCMC the sampled points form a Markov chain
Let us have a chain X = X1,X2, . . . now the chain is Markov
chain if the probability to jump to Xt+1 depends only on
previous point Xt :

P(Xt+1 |X1,X2, . . .Xt) = P(Xt+1 |Xt)

• The sampled points are thus not independent like in Monte
Carlo sampling.

• However, LLN can be shown to hold if the points are selected
in a proper way.
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Ergodicity of Markov chains
Assuming that the Markov chain:
• has the desired distribution π(x) as the stationary

distribution (reversibility)
• Detailed balance equation holds:

π(Xi ) P(Xj |Xi ) = π(Xj ) P(Xi |Xj )

• samples properly all parts of the state space:
• is aperiodic - don’t repeat itself
• is irreducible - all places can be reached

then the chain is ergodic and the LLN holds

1
N

N∑
t=1

f (Xt) −→ IEπ (f (X )) when N −→∞

• Standard MCMC algorithms are created so that LLN holds
for ’reasonable’ target distributions.
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MCMC in practice:

Several variants of MCMC exist but most common are:

• Metropolis algorithm (Metropolis Et. Al. 1953, J.Chem.
Phys.).

• Metropolis-Hastings algorithm (Hastings 1970, Biometrika).

• Gibbs sampling(Gelfand and Smith 1990, J.
Amer.Stat.Assoc.).
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Metropolis-Hastings algorithm

At each iteration step t

Step 1) (Proposal step) Sample Z ∼ q(· |Xt)

here Z is a candidate point and q(· |Xt) is a selected proposal
distribution

Step 2) (Acceptance step) Accept the candidate point by
using the acceptance probability:

α = min
(

1,
π(Z )q(Xt |Z )
π(Xt)q(Z |Xt)

)
= min

(
1,

plh(y |Z ) ppr(Z ) q(Xt |Z )
plh(y |Xt) ppr(Xt) q(Z |Xt)

)
Put Xt+1 = Z if accepted

Xt+1 = Xt if rejected.
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Metropolis algorithm

When the proposal distribution q is symmetric (eg. Gaussian
N(Xt ,Cq) centered at the present point Xt ):

Step 2) (Acceptance step) Acceptance probability is now
simply:

α = min
(

1,
π(Z )
π(Xt)

)
= min

(
1,

plh(y |Z )ppr(Z )
plh(y |Xt)ppr(Xt)

)
Put Xt+1 = Z if accepted

Xt+1 = Xt if rejected.
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Note:

• Acceptance probability is selected so that detailed balance
(π(x)P(y | x)) = π(y)P(x | y)) holds. This ensures that the
chain converges towards the correct target distribution π

• When the proposal distribution is correctly chosen the LLN
assures that the expectation can be approximated by using
empirical mean (under mild conditions for π ).
• Theoretically, any proposal q having the same support as
π should work.
• Usually the proposal distribution q is selected so that it is

easy to sample candidate points from it. (eg. Gaussian,
fixed spheres or regions around the present point)
• In practice, some proposals q are better than the others.
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Note (cont):

• Computing the accptance probability of a posterior
distribution requires evaluating

π(Z )
π(Xt)

=
plh(y |Z ) ppr(Z )
plh(y |Xt) ppr(Xt)

thus the scaling factor

p(y) =
∫

plh(y | x)ppr(x)dx

needs not to be evaluated!

• Candidate point is always accepted if more probable.

• Also non-zero probability to accept less probable values.
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Sampled chain is z0, z1, z1, z1, z4, z5, z6, z6, z8, z9, z10, . . .
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MCMC demo

Posterior distribution by
Monte Carlo sampling
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MCMC demo

Posterior distribution by
Monte Carlo sampling:
kernel estimate
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Example of marginal posterior distribution of ozone and aerosol horizontal
column densities in GOMOS retrieval. The dots indicate sampled points and
their distribution indicates the posterior distribution of the solution. The
contour curves, computed from sampled points by using Gaussian kernel
estimates correspond to 68.3, 90, 95, and 99% probability regions.
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MCMC in practice

Even though the basic algorithm is very simple and, in theory,
LLN holds for eg. simple Gaussian proposal distribution, few
things need to be characterized:

• Select a proposal distribution.
This is an important topic and we’ll discuss this more in the
following slides

• Select starting point.
In theory, any point will work. In practice it is worth selecting a
reasonable point, e.g., the solution of an iterative algorithm.

• How long chain is needed?
This is difficult to say and depends on the target distribution
and its dimension. Important to be careful and get hands on
experience on this. Several convergence diagnostics also exist
and can be sometimes useful.
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MCMC in practice cont.

• Burn-in
Typically the beginning of the chain is rejected as a ’burn in’
period.
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Proposal distribution
• Efficient sampling requires ’good’ propsal distribution

Nice sampling: good
proposal

Slowly converging chain: Too
small proposal

Chain does not move
properly: Too large proposal
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Good proposal
• Good balance between accepted and rejected points.
This is typically monitored during sampling.

• In Metropolis algorithm with Gaussian target and Gaussian
proposal the optimal acceptance ratio is

ar =
n of accepted points
n of proposed points

≈ 0.234

when the dimension of the target is roughly larger than 6.
Optimal acceptance ratio is slightly larger in smaller dimensions
(eg. in 2D case 0.35). (See Gelman et al, Efficient Metropolis
Jumping Rules, Bayesian Statistics 5, 1996)
• If the target is close to Gaussian acceptance ratio 0.2–0.3
should be ok.
• If the distribution is strongly non-Gaussian smaller
acceptance ratio is obtained even with ’good’ proposal.
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• For sampling Gaussian distribution N(µ,C) The optimal
Gaussian proposal in Metropolis algorithm is:

q(·) ∼ N(·, cd
2 C)

where
cd =

2.4
√

d
(See Gelman et al, Efficient Metropolis Jumping Rules,
Bayesian Statistics 5, 1996)
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Applying Metropolis algorithm for GOMOS spectral
inversion

Metropolis algorithm:
• Easy technique for sampling points X0, . . . ,Xn from the target
distribution:

Eπ (f (x)) ≈
1
n

n∑
i=1

f (Xi)

In practice:

• GOMOS case: the amount of data is enormous, the posterior
distributions vary a lot, depending on atmospheric conditions
and the noise level of the data −→ no fixed proposal
distribution works effectively for MCMC.

• Manual tuning of proposal distribution impossibe.

• Adaptive and automatic MCMC necessary!
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Data/noise

Data using bright star Data using dim star
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• Strong variability in signal-to-noise ratio depending on the
type of star.
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Variability in posterior distributions for different cases
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Several decades of variability depending on the
altitudes
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Adaptive MCMC

• Idea: optimize proposal distribution during sampling. Learn
from past chain.

• One needs to be careful since ergodicity can be lost.

• One of the commonly used approaches is Adaptive
Metropolis algorithm (See Haario et al, An adaptive
Metropolis algorithm, Bernoulli, 2001)

• Several variants of this algorithm also exist but we
concentrate here mainly on the original version.
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Adaptive Metropolis (AM) algorithm - the idea

• AM is simply basic Metropolis algorithm with Gaussian
proposal distribution which is adapted during sampling
• In AM the covariance matrix of the proposal distribution is
updated based on earlier sampled points.
We define

Ct =

{
C0, t ≤ t0
cd Cov(X0, . . . ,Xt−1)+ cdε, t > t0.

Here cd = 2.4/
√

d as earlier.
The additional term ε > 0 ensures that the distribution does not
become singular.
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• Empirical covariance matrix determined by points
x0, . . . , xt ∈ IRd :

Cov(x0, . . . , xt) =
1
t

(
t∑

i=0

xixT
i − (t + 1)x t xT

t

)
,

where the mean is

x t =
1

t + 1

t∑
i=0

xi .
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Implementing AM algorithm: Recursion formulas for
updates

• Recursive formula for the mean x t :

x t+1 =
t + 1
t + 2

x t +
1

t + 2
xt+1

• Recursive formula for the covariance Ct :

Ct+1 =
t − 1

t
Ct +

cd

t

(
tX t−1X

T
t−1 − (t + 1)X tX

T
t + XtX T

t

)
.
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Adaptive Metropolis algorithm

At each iteration step t > t0
Step 1) (Proposal step) Sample candidate from proposal
distribution N(Xt−1,Ct)

Step 2) (Acceptance step) Accept using Metropolis algorithm

Step 3) Update proposal distribution by using the recursion
formulas.
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Adaptive Metropolis algorithm cont.

• Proposal distributions
which adapt suitable
size and/or shape by
using the information of
the previous states in
the chain
• Gaussian proposal

distribution N(Xt ,Ct),
where the covariance Ct

depends on time.
• The chain is not a

Markov chain but the
right ergodic properties
can be proved (ref.
Haario et al, 2001).

−25 −20 −15 −10 −5 0 5 10 15 20 25
−8

−6

−4

−2

0

2

4

6

• The ’idea’ of the proof is that along
the time the proposal distribution
converges and the adaptation
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AM: Adaptive Metropolis algorithm
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• AM: Convergence towards right target distribution. Green
distribution target. Solid line AM.
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AP: Adaptive proposal algorithm (Haario et al, 1999)
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• AP: adapting proposal distribution during sampling based on
only most recently sampled points.
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AP: Adaptive proposal algorithm

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

• AP: not right covergence properties if adaptation is continued
throughout the sampling.
• If adaptation stopped after the burn-in period then AP
algorithm is OK. In practice, AP works well for reasonably
’Gaussian’ targets also when adaptation is continued.
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GOMOS: Sampling posterior distribution using MCMC
Motivation:
• Visualizaiton of posterior distribution.
• Freedom in defining a priori: Could be learn more by using

more complicated priors than Gaussian? Positivity, for
example?
• Freedom in defining noise: Could be learn more by using

different measurement noise structures than Gaussian.
• Could expectation be more robust estimate than MAP

estimate?
• Can we study the identifiability in non-linear problems?
• Validation of the operative algorithm:

• Is the posterior distribution really Gaussian - how well does
the covariance matrix approximate the posterior
distribution?

• Does the posterior distribution include ’local maximums’ -
does the iterative Levenberg-Marquardt algorithm get stuck
on these points?
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Implementation - visualization of posterior distributions
• Automatic and adaptive algorithm essential for implementing
MCMC in real GOMOS application. In practice AM (and AP, an
earlier version of it) used for studying non-linear GOMOS
spectral inversion.
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Simulated case: Two-dimensional kernel estimates of the marginal posterior
distributions of the gases at 30 km. On x axis we present the ozone values
and on the y axis from left: air, NO2, NO3, and aerosol. The contours refer to
68.3, 90, 95, and 99% probability regions. The true values used in the
forward model are denoted with dots.
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Example of implementing other than Gaussian noise
structure

• By linearizing the GOMOS spectral inversion the noise
becomes non-Gaussian
• The likelihood function after the linearization is:

p(̃y | x) =
1

(2π)m/2)|C|
1
2

· exp

−1
2

m∑
i=1

(
f (x; λi)− y(λi)

σ 2
i

)2

− ỹ

 .
• This can easlily be implemented in MCMC
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• Simulated example: correct error characterization
(non-Gaussian) improves results.
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Noise statistics: robust inversion

• Uncertainties larger at lower
part.
• Robust `1 norm likehlihood:

p(y | x) ∝ exp

(
−

m∑
i=1

√
2
∣∣fi(x)− yi

∣∣
σi

)
.

• Example: robust inversion
improves results at low
altitudes
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Examples - identifiability in GOMOS retrieval
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Marginal posterior densities for various retrieved constituents with varying
number of spectral data: all 1417 data points (blue line), every second (red
line) and every fourth data point (green line).

44 / 45



MCMC toolbox for matlab

Available at:
http://helios.fmi.fi/∼lainema/mcmc
Developed by Marko Laine (FMI).
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