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1 The Lorenz equations

We consider various data assimilation schemes applied to the Lorenz equations, a simple dynamical
model with chaotic behaviour. The Lorenz equations are given by the nonlinear system

dx

dt
= −σ(x − y), (1)

dy

dt
= ρx − y − xz, (2)

dz

dt
= xy − βz, (3)

where x = x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, which in these experiments are chosen to
have the values 10, 28 and 8/3 respectively.

The system is discretized using a second order Runge-Kutta method, which gives the following
discrete equations:

xk+1 = xk + σ∆t/2[2(yk − xk) + ∆t(ρxk − yk − xkzk)

− σ∆t(yk − xk)], (4)

yk+1 = yk + ∆t/2[ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk)) − yk

− ∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk + ∆t(xkyk − βzk))], (5)

zk+1 = zk + ∆t/2[xkyk − βzk

+ (xk + ∆tσ(yk − xk))(yk + ∆t(ρxk − yk − xkzk))

− βzk − ∆t(xkyk − βzk)], (6)

where ∆t is the model time step and k is the time step index.
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2 Four-dimensional variational data assimilation (4D-Var)

2.1 Introduction

The 4D-Var schemes in these programs minimize a function of the form

J =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1

2

n∑

i=0

(y(i) − Hi(xi))
TR−1(y(i) − Hi(xi), (7)

where we assume that B = σ2
b
I and R = σ2

o
I. A full 4D-Var scheme minimizes this cost function by

use of the nonlinear model and its adjoint, whereas an incremental 4D-Var scheme minimizes a series
of simplified cost functions in different ‘outer loops’. You are provided with routines for both types of
schemes. The routines used are as follows:

lorenz4d.m Top level routine for full 4D-Var
lorenz4d inc.m Top level routine for incremental 4D-Var
calcfg.m Calculate cost function and its gradient for full 4D-Var
calcfg inc.m Calculate cost function and its gradient for incremental 4D-Var

modeuler.m Nonlinear model for Lorenz system
modeuler tl.m Tangent linear model
modeuler adj.m Adjoint model

test tl.m Test tangent linear model
test adj.m Test adjoint model
test grad.m Test of calcfg
test gradinc.m Test of calcfg inc
menu asl Used to provide menus

2.2 Test routines - Building a 4D-Var system

When building a 4D-Var system, there are standard ways of testing the various components before it is
used for assimilation. You can experiment with these tests.

2.2.1 Test of tangent linear model

Suppose that M is a nonlinear model and M is the tangent linear model. Then for small perturbations
γδx we have

M(x + γδx) − M(x) ≈ M(x)γδx. (8)

Hence if we plot the relative error

ER =
M(x + γδx) − M(x)

M(x)γδx
(9)

as γ → 0 we should find that ER → 0.
Exercise: Use the routine test tl to plot the relative error. Try introducing an error into the tangent

linear code modeuler tl and see what effect it has on the test.

2.2.2 Test of adjoint model

For a linear model M and its adjoint M∗ we have the identity

< Mδx,Mδx >=< δx,M∗Mδx > (10)
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for any inner product <, > and perturbation δx. This can be used to test that the adjoint is coded
correctly.

Exercise: Use the routine test adj to test the adjoint code. Try introducing an error into the adjoint
code modeuler adj and see what effect it has.

2.2.3 Gradient test

Let J be a cost function and ∇J be its gradient. Then we can check that the exact gradient of the
cost function has been coded by using the identity

Φ(α) =
J (x + αh) − J (x)

αhT∇J (x)
= 1 + O(α), (11)

where h is a vector of unit length, which we can take to be ∇J (x)||∇J (x)||−1. For small values of α
not too close to machine zero we expect Φ(α) to be close to 1.

Exercise: Use the program test grad or test gradinc to test either of the two cost functions. The
output of these routines is a plot of Φ(α) and a plot of |Φ(α) − 1|. Try introducing an error into the
gradient calculation to see how this affects the test results.

2.3 Assimilation program

The routines used to run assimilation experiments are lorenz4d for the full 4D-Var and lorenz4d inc for
incremental 4D-Var. The menu options you must specify, with some suggested values, are

Initial values of x, y, z 0.0–5.0
Assimilation period (in seconds) 0–10
Forecast period (in seconds) Any
Time step (in seconds) 0.0–0.05
Frequency of observations (in time steps) Any
Noise on background Variance = 0–4 (excluding zero)
Noise on observations Variance = 0–4 (excluding zero)
Convergence criteria Default values given
Number of outer loops 2 (Incremental version only)

Note that the time step must be a divisor of your total time, so values such as 0.02, 0.025, 0.05 work
well. The output of the program is the fields of x and z, the errors in x and z and the convergence of
the cost function and its gradient. The final norm of the gradient is also output in the Matlab command
window.

The noise on the background and observations is produced randomly each time the program is run.
In order to compare the effect of different settings you can choose to use the same realisation of random
noise as in your previous experiment by answering ’Yes’ to the question ’Read in noise from file?’. Note
that in order for this to work the number of observations must remain the same.

2.4 Suggested exercises

Start with the conditions
truth=(1.0,1.0,1.0)
Assimilation period = 2
Forecast period = 3
Time step = 0.05
Frequency of observations = 2

1. Run the 4DVar with the different relative errors on the background and observations. How does
the behaviour of the scheme change?
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2. Is it better to have very few accurate observations or more observations which are less accurate?
Consider both the accuracy of the analysis and the rate of convergence.

3. Is it better to have a long assimilation window with few observations or a short assimilation
window with more observations? Does this depend on how much error there is on the observations?
Consider both the accuracy of the analysis and the rate of convergence.

4. How does the rate of convergence change as the background error changes?

5. Compare full 4D-Var and incremental 4D-Var for the same total number of iterations. Are there
conditions for which one scheme is better than the other?

6. For the incremental 4D-Var investigate the effect of different outer loops with the same total
number of iterations. Compare against the full 4D-Var solution.

2.5 Advanced exercises

The following exercises require you to understand and change the code.

1. Investigate the effect of correlated observation errors in 4D-Var.
Introduce correlations in your observation errors by changing the program so that the same random
noise is used to create the observation error for x, y and z (or just two of these). How does this
affect the assimilation results? Consider what happens when the observation error covariance
matrix is assumed to be diagonal and not.

2. Investigate the effect of biased observations in 4D-Var.
Try replacing the random observation error with a constant bias for one or more of the variables.
What is the effect on the analysis?

3. Investigate the performance of 4D-Var when the model state is only partially observed.
Change the code so that only two components of the state vector are observed. How well is
the other component retrieved by the assimilation? Compare the effect of using a diagonal and
non-diagonal background error covariance matrix.

4. Investigate the effect of model error in 4D-Var. You may consider
(a) random stochastic error;
(b) an error in the parameters;
(c) a bias error.
Usually the numerical model we use to assimilate is not an exact representation of the true system,
but will contain model errors. We can investigate the effect of this in a simple assimilation exper-
iments by using one version of the model to produce the ‘truth’ trajectory and the observations
and using a different version of the model to assimilate. To add error to the assimilation model
you may
(a) add a random forcing to one of the model equations;
(b) change one of the model parameters σ, β or ρ to be slightly different in the assimilation model;
(c) add a constant forcing to one of the model equations.
How does this affect the analysis?
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Historical Background:
What has been important for getting 
the best NWP forecast?

NWP systems are improving by 1 day of predictive skill per 
decade.  This has been due to:

1. Model improvements, especially resolution.

2. Careful use of forecast & observations, allowing for their 

information content and errors.  Achieved by variational
assimilation e.g. of satellite radiances.

3. 4D-Var.

4. Better observations.

ESA Summer School 2012



Performance Improvements

Met Office RMS surface pressure error over the N. Atlantic & W. Europe

“Improved by about a day per decade”

Andrew Lorenc
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Importance of forecast model

• A large part of the increase in assimilation accuracy 
comes from improvements to the model

• A large part of the increase in model accuracy comes 
from improvements in resolution

• The resolution has been limited by computer power.

• Still true today – a larger part of this year’s increases 
in computer power at the Met Office will be spent on 
increased resolution than on improved algorithms.

NWP is an extreme example here.  
Other applications of DA place less emphasis 
on the model and more on use of data. 

ESA Summer School 2012



Data Assimilation is the process of absorbing 
and incorporating observed information into a 
prognostic model.      

• At any time, the model state usually contains more information than the 
current observations.

• Only parameters well represented by the model can be assimilated in this 
way.

ASSIMILATION MODEL

OBSERVATIONS

• The model state summarises in an organised 
way the information from earlier observations.

• It is modified to incorporate new observations, 
by combining new & old information in a 
statistically optimal way.

This is normally done 
by integrating the 

model forward in time, 
adding observations.
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Data Assimilation is the process of 
absorbing and incorporating observed 

information into a prognostic model.

Assimilation Window

9 UTC 12 UTC 15 UTC

Obs.

x

Time

xb

xa

Jo

Obs.

Jo

Jb

Obs.

Jo

Obs.

Jo

© Crown copyright   Met Office ESA Summer School 2012



Four-dimensional analysis problem

Strong constrain: the sequence of model states must be 
a solution of the model equations 

Assumptions:
Unbiased and uncorrelated Gaussian errors
Tangent linear hypothesis: the cost function can 
be made quadratic by assuming that the 
observation operator and the model can be 
linearised
Optimal linear analysis: we look for an analysis 
defined by correction to the background which is 
a minimum variance estimate
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Example of scalar case

The analysis remains equal to the 
background 

The analysis is equal to the 
observation

The analysis is a weighted average of the 
background and the observation

ESA Summer School 2012



Four-dimensional analysis problem
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Four-dimensional analysis problem

4D-Var has the following characteristics:

� it works under the assumption that the model is perfect (strong
constrain 4D-Var)

� it requires the implementation of the so-called adjoint model

� in a real time system it requires the assimilation to wait for the 
observations over the all 4D-Var window to be available before the 
analysis procedure can begin

� the analysis is used as initial state for a forecast so by construction 
the forecast will be completely consistent with the model equation and 
the four dimensional distribution of the observations until the end of the 
4D-Var window 

� 4D-Var is an optimal assimilation algorithm over its time window
© Crown copyright   Met Office ESA Summer School 2012



Full versus Incremental 4D-Var

• The incremental method is an empirical technique designed to reduce 
the cost of solving a predefined variational problem, e.g. by reducing 
the resolution of the increments.

• With 3D- or 4D-Var is it usually not affordable to solve the variational
problem at the full model resolution. Since it is expected that most of 
the complexity of the analysis is in the synoptic scales, while the 
smaller scales are more or less forced to be realistic features by the 
model dynamics, the full resolution problem is solved by looking for   
a low-resolution correction to a high-resolution background. 

• Mathematically, it can be thought as the approximation of a large 
problem by a sequence of smaller problems. 

© Crown copyright   Met Office ESA Summer School 2012



4D-Var versus Kalman Filter

• The Kalman Filter and its extended version (EKF) are sequential data 
assimilation techniques, in which each background is provided by a 
forecast that starts from the previous analysis. 

• The analysis equations of the linear Kalman Filter are exactly the ones 
described in 4D-Var. 

• KF/4D-Var equivalence: Over the same time interval assuming that the 
model is perfect, and that both algorithms use the same observations and 
the same initial state and error covariance matrix, the Kalman Filter 
estimate is identical to that produced by 4D-Var. The Kalman Filter solves 
the problem sequentially whereas 4D-Var solves the 4D problem globally 
over the same assimilation. 

• 4D-Var actually is a Kalman smoother since it uses also the observations 
in the future to update the initial condition of the forecast model.

© Crown copyright   Met Office ESA Summer School 2012



Lorenz’63 Model

In 1963 Lorenz developed a 
simplified mathematical model for 
atmospheric convection.
The model is a system of three 
ordinary differential equations 
(the Lorenz equations).
It is notable for having a chaotic 
behaviour for certain parameter 
values and initial conditions.

The Lorenz equations are given 
by the nonlinear system:
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Exercises of today

Start by testing 4D-Var assumptions: 

• Test tangent linear hypothesis

• Test of the adjoint model

• Test of cost function gradient

using full 4D-Var (lorenz4d.m) or incremental 4D-Var (lorenz4d_inc.m)

Explore system behaviour when changing:

• relative errors on background and observations

• number and accuracy of observations

Compare full 4D-Var and incremental 4D-Var.
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Example
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