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The Kalman Filter 



Kalman Filter 
(expensive) 

Use model equations to                
propagate B forward in time. 

 B        B(t) 

Analysis step as in OI 

 



Evolution of Covariance Matrices 

 

xb
n +1 = M(xa

n )  = M(xn ) + Mea
n

   where M is the non - linear model, M is the tangent linear model, 
   and the epsilons are vectors

x n +1 = M(xn ) -em

Subtract :    eb
n +1 = xb

n +1 - xn +1 = Mea
n + em

The forecast error covariance is:  Bn +1

              =< (eb
n +1)(eb

n +1)T >

              =  M(tn )PaM
T (tn ) + Q(tn )  where  Q =< emem

T >

where Pa =< (ea
n )(ea

n )T >
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The Kalman Filter 
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Extended Kalman Filter 

• Allows for the model to be non-linear and 
imperfect and for the observation operator to 
nonliear. 

• Reduces to the standard KF when linearity 
holds (and looks like it algorithmically).  

• The EKF linearises locally in time about the 
nonlinearly evolving state estimate.  

• Very expensive to implement because of the 
very large dimension of the state space (~ 
106 – 107 for NWP models). 



Ensemble Kalman Filter 
• Carry forecast error covariance matrix 

forward in time by using ensembles of 
forecasts: 
 
 
 

• Only ~ 10 + forecasts needed. 
• Does not require computation of tangent 

linear model and its adjoint.  
• Does not require linearization of evolution of 

forecast errors. 
• Fits in neatly into ensemble forecasting. 
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The Particle Filter 

Represent full pdf by ensemble of model runs 
 



 Particle Filter with resampling  



4d-Variational Assimilation 



4D Variational Data Assimilation 

given X(to), the 
forecast is 
deterministic 

vary X(to) for best fit to data 
to t 

obs. & 
errors 



4d-Variational Assimilation 

 

J(x(t0)) =
1
2

[y i
i=0

N

å - H(x i)]
T Ri

-1[y i - H(x i)]

              +
1
2

[x(t0) - xb (t0)]T B0
-1[x(t0) - xb (t0)]

where  x(ti) = M0® i(x(t0))    i.e. the model is treated
                                                   as a strong constraint
Minimize the cost function by finding the gradient  

(“Jacobian”) with respect to the control variables in  
)( 0tJ x¶
)( 0tx



4d-VAR comments 

•The 2nd term on the RHS of the cost function measures the 
 distance to the background             at the beginning of 
 the interval.  

•The term helps join up the sequence of optimal trajectories 
 found by minimizing the cost function for the 
 observations. 

• The “analysis” is then the optimal trajectory in state space. 
 Forecasts can be run from any point on the trajectory, 
 e.g. from the middle.  

 

xb (t0)
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Some Matrix Algebra 

 

J = J(x(x0))

Then   ¶J
¶x0

=
¶x
¶x0
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Let J have the following form :   J =
1
2

zT (x)Az(x)

Then it can be shown that   
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¶x
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¶z
¶x
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Combining these results :   ¶J
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adjoint of the model 



4d-VAR for Single Observation 
This image cannot currently be displayed.
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4d-VAR Procedure 

• Choose               for example. 
• Integrate full (non-linear) model forward in 

time and calculate    for each observation. 
• Map    back to t=0 by backward integration of 

TLM, and sum for all observations to give the 
gradient of the cost function. 

• Move down the gradient to obtain a better 
initial state (new trajectory “hits” observations 
more closely) 

• Repeat until some STOP criterion is met. 
note: not the most efficient algorithm 
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Comments 
• 4d-VAR can also be formulated by the method of 

Lagrange multipliers to treat the model equations as 
a constraint. The adjoint equations that arise in this 
approach are the same equations we have derived 
by using the chain rule of partial differential 
equations. 

• If model is perfect and B0 is correct, 4d-VAR at final 
time gives same result as extended Kalman filter (but 
the covariance of the analysis is not available in 4d-
VAR). 

• 4d-VAR analysis therefore optimal over its time 
window, but less expensive than Kalman filter. 



Incremental Form of 4d-VAR 

• The 4d-VAR algorithm presented earlier is 
expensive to implement. It requires repeated 
forward integrations with the non-linear 
(forecast) model and backward integrations 
with the TLM. 

• When the initial background (first-guess) 
state and resulting trajectory are accurate, an 
incremental method can be made much 
cheaper to run on a computer.  



Incremental Form of 4d-VAR 

 

The incremental form of the cost function is defined by

J(dx0) =
1
2

(dx0)T B0
-1(dx0)

+
1
2

[y i - H(x f (ti)) - H i
i=0

N

å L(t0,ti)dx0]T Ri
-1[y i - H(x f (ti)) - H iL(t0,ti)dx0]

                           
Taylor series expansion about first-
guess trajectory                   starting 
from   

                   

)( i
f tx

Minimization can be done in  lower dimensional space 

 

where  dx0 = x(t0) - xb (t0)

 

xb (t0)

 

xb (t0)

 

dx0



4D Variational Data Assimilation 

• Advantages 
– consistent with the governing eqs. 
– implicit links between variables  

• Disadvantages 
– very expensive 
– model is strong constraint 

 



Summary of basic principles 

• DA is concerned with estimating the state of a system given: 
• observations (direct [e.g. in-situ] and indirect [e.g. remotely sensed]), 
• forecast models (to provide a-priori data, given too-few obs), 
• observation operators (to connect model state with obs). 

 
• All data have uncertainties, which must be quantified. 

• DA estimates are sensitive to uncertainty characteristics, which are often poorly known. 
• Many observations and model have systematic as well as random errors. 
• Should take into account all sources of error in the system. 

 
• DA theory is suited mostly to errors that are Gaussian distributed. 

• Most errors are non-Gaussian and non-linearity is synonymous with non-Gaussianity. 
 
• DA problems are computationally expensive and require intensive development effort. 



 



Leading methods of solving the DA problem 

Method Description Pros Cons 

A. Data 
insertion 

Set grid points to 
observation values 

1. Easy to do 1. No respect of uncertainty 
2. What about observation voids? 
3. Can’t deal with indirect observations 

B. Variational 
data 
assimilation 

Minimize a cost 
function 
Many flavours: 3D, 
4D, weak/strong 
constraint 

1. Respect of data uncertainty 
2. Direct  and indirect observations 
3. Pf gives smooth and balanced fields 
4. Efficient 
5. Can deal with (weakly) non-linear h 

1. Pf  is difficult to know, often static and 
suboptimal 

2. High development costs 
3. h: need tangent linear, H and adjoint, HT 
4. Gaussian pdf 

C. Kalman 
filtering 

Evaluate KF 
equations 

1. As B.1, B.2, B.3 
2. Pf adapts with the state 

1. As B.3, B.4 
2. Difficult to use with non-linear h 
3. Prohibitively expensive for large n 

D. Ensemble 
Kalman 
filtering 

Approximate KF 
equations with 
ensemble of N 
model runs 
Many flavours 

1. As B.1,B.2, B.4, B.5, C.2 
2. h: do not need H and HT 
3. Have measure of analysis spread 

1. As B.4 
2. Serious sampling issues when N << n 
3. Need ensemble inflation and localization 

schemes to overcome D.2 

E. Hybrid Cross between C/D 1. As B.1, B.2, B.3, B.4, B.5, C.2 1. As D.2 

F. Particle 
filter 

Assign weights to 
ensemble 
members to 
represent any pdf 

1. As. B.1, B.2 
2. Can deal with non-linear h 
3. Can deal with non-Gaussian pdf 
4. Have measure of analysis spread 

1. As D.2 
2. Inefficient – members  often become 

redundant 
3. Need special techniques to overcome F.2 



Some Useful References 
• Atmospheric Data Analysis by R. Daley, Cambridge 

University Press. 
• Atmospheric Modelling, Data Assimilation and Predictability 

by E. Kalnay, C.U.P. 
• The Ocean Inverse Problem by C. Wunsch, C.U.P. 
• Inverse Problem Theory by A. Tarantola, Elsevier. 
• Inverse Problems in Atmospheric Constituent Transport by 

I.G. Enting, C.U.P. 
• Dynamic Data Assimilation, Lewis et al. C.U.P 
• Data Assimilation: the ensemble KF, G. Evensen, Springer 
• Quantitative Remote Sensing of Land Surfaces, S Liang, 

Wiley 
• ECMWF lecture notes: www.ecmwf.int 
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