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How does NWP use 

observations? 

1.) Introduction to data 

assimilation for NWP 
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• The forecast model time evolves fields of geophysical parameters (e.g. 

T/Q/U/V/Ps/O3) following the laws of thermodynamics and chemistry 

• The initial conditions used to start the forecast model are provided by 

the analysis

• The analysis is generated from observations relating to the 

geophysical parameters combined with a priori background information

(usually a short-range forecast from the previous analysis, also called 

first guess).

•This combination process is known as data assimilation.

Key elements of an NWP system
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Background information

Observations

Analysis

Initial conditions

for next forecast
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The data assimilation process
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The Data Assimilation Process

Observations

intermittently adjust 

the evolution of the 

forecast model

ESA Summer School 2010



4

Slide 7

0.8%

1.5%

0.6%

0.3%

35.7%

61.2%

Conventional
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SCATT

GPSRO

TRACE

Radiances

Used observations: satellites

• Nadir radiances

– ATOVS: AMSU-A, AMSU-B/MHS, HIRS

– SSM/I, AMSR-E 

– AIRS, IASI

– MVIRI, SEVIRI, GOES-, MTSAT-1R imagers

brightness temperature = level 1

• GPSRO bending angles

– COSMIC, GRAS

bending angle = level 1

• Atmospheric Motion Vectors (AMVs)

– Meteosat 7/9, GOES-11/12, MTSAT-1R, MODIS-winds

wind = level 2

• Sea surface parameters

– Scatterometer winds

– Altimeter data

wind speed and wave height = level 2

• Ozone

– SBUV, OMI

total/partial column ozone = level 2
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89.4%
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Satellite observing system
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LEO Sounders LEO Imagers

Scatterometers GEO imagers

Satellite Winds (AMVs) GPS Radio Occultation

Example of satellite data coverage
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Radiosondes

SYNOP/SHIP observations

Aircraft data

BUOYS
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Example of conventional data coverage
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N. Hemisphere

S. Hemisphere

• Observing system experiments 

(OSEs) measure the impact of 

different types of observation.

• Satellite data is now the single 

most important component of the 

global observing network for 

NWP.

4 month sample of ECMWF 

forecasts

Forecast impact of satellite data
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Satellite data provide robustness to the global numerical forecasts
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Impact of various observing systems

ESA Summer School 2010

0 2 4 6 8 10 12 14 16 18 20

SYNOP-wind
AIREP-wind
DRIBU-wind
TEMP-wind
PILOT-wind
GOES-AMV

MTSAT-AMV
MET-AMV

MODIS-AMV
SCAT-wind

SYNOP-mass
AIREP-mass
DRIBU-mass
TEMP-mass

HIRS
AMSU-A

AIRS
IASI

GPS-RO
SSMI

AMSR-E
MHS

AMSU-B
MET 7-Rad
MET 9-Rad

MTSAT-Rad
GOES-Rad

FEC %

Relative FC error reduction per system

Nadir sounders AMSU-A, 

AIRS, and IASI provide 

largest impact 
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How do passive nadir 

sounders measure the 

atmosphere?

2.) Atmospheric sounding
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They DO NOT measure TEMPERATURE.

They DO NOT measure HUMIDITY or OZONE.

They DO NOT measure WIND.

•Satellite instruments measure the radiance L that reaches the top of the 

atmosphere at a given frequency v . 

•The measured radiance is related to geophysical atmospheric variables 

(T,Q,O3, clouds etc…) by the radiative transfer equation.

+ ...

What do satellite instruments measure?
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Atmospheric spectrum

 Depending on the wavelength, the radiation at the top of the 

atmosphere is sensitive to different atmospheric 

constituents

ESA Summer School 2010
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Frequency selection

By selecting radiation at different frequencies or CHANNELS a satellite 

instrument can provide information on a range of geophysical 

variables.  

In general, the channels currently used for NWP applications may be 

considered as one of two different types:

• Atmospheric sounding channels

• Surface sensing channels

In practice real satellite instruments have a combination of both 

atmospheric sounding and surface sensing channels.

ESA Summer School 2010
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Atmospheric sounding channels
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These channels are located in parts of the infra-red and microwave spectrum for 

which the main contribution to the measured radiance is described by:

dz
dz

d
zTBL

0

)(
))(,()(

That is they avoid frequencies for which surface radiation and cloud 

contributions are important.

They are primarily used to obtain information about atmospheric temperature 

and humidity.

AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)



10

Slide 19

Surface sensing channels
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These are located in window regions of the infra-red and microwave spectrum at 

frequencies where there is very little interaction with the atmosphere and the main 

contribution to the measured radiance is:

)(L Surface emission [ Tsurf , (u,v) ]

SSM/I channel 7 (89GHz) HIRS channel 8 (11microns)

These are primarily used to obtain information on the surface temperature and 

quantities that influence the surface emissivity such as wind (ocean) and 

vegetation (land).  They can also be used to obtain information on clouds/rain 

and cloud movements (to provide wind information) or total-column 

atmospheric quantities.
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Atmospheric temperature sounding

dz
dz

d
zTBL

0

)(
))(,()(

Select sounding channels for which

with K(z) = 
dz

d

and the primary absorber is a well mixed gas (e.g. oxygen in MW or CO2 in IR).

Then the measured radiance is essentially a weighted average of the 

atmospheric temperature profile:  

dzzKzTBL
0

)())(,()(

The function K(z) that defines this vertical average is known as a 

weighting function.

ESA Summer School 2010
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Ideal weighting functions

K(z)

z

If the weighting function was a 

delta-function, this would mean that

the measured radiance is sensitive

to the temperature at a single level

in the atmosphere.

K(z)

z

If the weighting function was a 

box-car function, this would mean

that the measured radiance was 

sensitive to the mean temperature

between two atmospheric levels
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Atmospheric weighting functions
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A lot of radiation is emitted from the 

dense lower atmosphere, but very 

little survives to the top of the 

atmosphere due to absorption.

At some level there is an

optimal balance between the 

amount of radiation emitted 

and the amount reaching the 

top of the atmosphere

High in the atmosphere very 

little radiation is emitted, but 

most will reach the top of the

atmosphere.

z

K(z)
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• The altitude at which the peak of the weighting 

function occurs depends on the strength of 

absorption for a given channel.

• Channels in parts of the spectrum where the 

absorption is strong (e.g. near the centre of CO2 or 

O2 lines ) peak high in the atmosphere.

• Channels in parts of the spectrum where the 

absorption is weak (e.g. in the wings of CO2 or O2

lines) peak low in the atmosphere.

AMSU-A

Weighting functions continued

By selecting a number of channels with varying absorption strengths we 

sample the atmospheric temperature at different altitudes.

ESA Summer School 2010
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AMSUA

15 channels

HIRS

19 channels

AIRS

2378

IASI

8461

More weighting functions
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AMSU-A:

• Advanced Microwave Sounding Unit

• 15 channels (12 in 50-60 GHz region)

• 48 km field-of-view (nadir), 2074 km swath

• Primarily temperature-sounding

• On-board NOAA-15-19, Aqua, METOP-A

Important satellite instruments for NWP

ESA Summer School 2010

AIRS:

• Atmospheric Infrared Sounder

• 2378 channels covering 650 - 2700 cm-1 (3.7-15.4 μm)

• 13.5 km field-of-view (nadir), 2130 km swath

• Primarily temperature/humidity-sounding, trace gases

• On-board Aqua

IASI:

• Infrared Atmospheric Sounding Interferometer 

• 8461 channels covering 645 - 2760 cm-1 (3.6-15.5 μm)

• 12 km field-of-view (nadir), 2132 km swath

• Primarily temperature/humidity-sounding, trace gases

• On-board METOP-A

Slide 26

How do we extract 

atmospheric information (e.g. 

temperature) from satellite 

radiances?

3.) Retrieval algorithms

ESA Summer School 2010
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If we know the entire atmospheric temperature profile 

T(z) then we can compute (uniquely) the radiances a 

sounding instrument would measure using the 

radiative transfer equation.  This is sometimes known 

as the forward problem.

In order to extract or retrieve the atmospheric 

temperature profile from a set of measured radiances 

we must solve what is known as the inverse problem.

Unfortunately as the weighting functions are generally 

broad and we have a finite number of channels, the 

inverse problem is formally ill-posed because an 

infinite number of different temperature profiles could 

give the same measured radiances !!!

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote 

measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624

Extracting atmospheric temperature 

from radiance measurements

ESA Summer School 2010
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The linear data assimilation schemes used in the past at ECMWF such as 

Optimal Interpolation (OI) were unable to assimilate radiance observations 

directly (as they were nonlinearly related to the analysis variables) and the 

radiances had to be explicitly converted to temperature products before the 

analysis.

This conversion was achieved using a variety of retrieval algorithms that differed 

in the way they used prior information

All retrieval schemes use some (either explicit of implicit) form of prior 

information to supplement the information of the measured radiances and solve 

the inverse problem !

Three different types of retrieval have been used in NWP:

1. Solutions to reduced inverse problems

2. Regression / Neural Net (statistical) methods

3. Forecast background (1DVAR) methods

Retrieval schemes for NWP

ESA Summer School 2010
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1. Solutions to reduced inverse problems

We acknowledge that there is a limited amount of information in the measured radiances and re-

formulate the ill-posed inverse problem in terms of a reduced number of unknown variables that can 

be better estimated by the data. e.g. deep mean layer temperatures, Total Column Water / Ozone  

or EOF’s (eigenfunctions)

Unfortunately it is difficult to objectively quantify the error in these quantities (which is very 

important to use the retrieval in NWP) due to the sometimes subjective choice of reduced 

representation.  

2.  Regression and Library search methods

Using a sample of temperature profiles matched (collocated) with a sample of radiance 

observations/simulations, a statistical relationship is derived that predicts e.g. atmospheric 

temperature from the measured radiance. e.g. NESDIS operational retrievals or the 3I approach

These tend to be limited by the statistical characteristics of the training sample / profile library and 

will not produce physically important features if they are statistically rare in the training sample. 

Furthermore, their assimilation can destroy sharp physical features in the analysis!

3.  Forecast Background or 1D-Var Methods 

These use an explicit background or first-guess profile from a short range forecast and perform 

optimal adjustments using the measured radiances.  The adjustments minimize a cost function.

ESA Summer School 2010
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It can be shown that the maximum likelihood approach to solving the inverse 

problem requires the minimization of a cost function J which is a combination 

of two distinct terms:

])H[(])H[()()()(
11

xyxyxxxxxJ
T

b
T

b RB

Fit of the solution to the 

background estimate of the 

atmospheric state weighted 

inversely by the background 

error covariance B.

Fit of the solution to the measured 

radiances (y) weighted inversely by 

the measurement error covariance 

R (observation error + error in 

observation operator H).

The solution obtained is optimal*** in that it fits the prior (or background) 

information and measured radiances respecting the uncertainty in both.

1D state or profile Radiance vector RT equation

1DVAR retrievals and the cost function

ESA Summer School 2010

***If background and observation errors are Gaussian, unbiased, 

uncorrelated with each other; all error covariances are correctly specified; 

***If background and observation errors are Gaussian, unbiased, 

uncorrelated with each other; all error covariances are correctly specified; 
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One simple linear form of the 1D-Var solution obtained by minimization of the 

cost function is given by the expression:

The retrieved profile (xa)  is equal to the background profile (xb) plus a 

correction term applied.  Furthermore we can quantify the error covariance Sa

of the 1D-Var retrieval which is needed for subsequent assimilation:

)(][][
1

b
TT

ba xyxx HRHBHHB

Correction term, “increment”

)(][][
1

b
TT

ba xyxx HRHBHHBSa =   B - HB

The retrieval being an improvement over the background information 

(assuming all parameters are correctly specified). 

Improvement term

1DVAR retrievals continued …

ESA Summer School 2010
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HIRS 19 channels

IASI 8461 channels

The magnitude of the improvement over the background clearly depends 

on a number of parameters, but one crucial factor is the number of 

channels and shape of the weighting functions implied by the radiative

transfer operator H.

1DVAR retrievals continued…

ESA Summer School 2010
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These have a number of advantages that make them more suitable for NWP 

assimilation than other retrieval methods:

•The prior information (short-range forecast) is very accurate (more than 

statistical climatology) which improves retrieval accuracy.

•The prior information contains information about physically important features

such as fronts, inversions and the tropopause.

•The error covariance of the prior information and resulting retrieval is better 

known (crucial for the subsequent assimilation process).

•The 1DVAR may be considered an intermediate step towards the direct 

assimilation of radiances.

BUT  the error characteristics of the 1DVAR retrieval may still be very 

complicated due to its correlation with the forecast background …

Direct radiance assimilation

Characteristics of 1DVAR retrievals

ESA Summer School 2010
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But do we really need explicit 

retrievals for NWP?

4.) Direct radiance 

assimilation

ESA Summer School 2010
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Variational analysis methods such as 3DVAR and 4DVAR allow the direct 

assimilation of radiance observations (without the need for an explicit retrieval 

step). 

This is because such methods do NOT require a linear relationship between the 

observed quantity and the analysis variables.

The retrieval is essentially incorporated within the main analysis by finding the 

3D or 4D state of the atmosphere that minimizes 

])H[(])H[()()()(
11

xyxyxxxxxJ
T

b
T

b RB

In direct radiance assimilation the forecast background still provides 

the prior information to supplement the radiances, but it is not used 

twice (as would be the case if 1D-Var retrievals were assimilated ).

Atmospheric

state vector

Vector of all

observed data

“Observation operator” 

H = radiative transfer equation        

(+ NWP model integration in 4DVAR)

Direct assimilation of radiances

ESA Summer School 2010
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4DVAR data assimilation

ESA Summer School 2010
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Background Observation Background departure

4DVAR 

data assimilation 
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By the direct assimilation of radiances we avoid the problem of 

assimilating retrievals with complicated error structures.

BUT

There are still a number of significant problems that must be handled:

• Specifying the covariance (B) of background errors.

• Specifying the covariance (R) of radiance error.

• Removing biases and ambiguities in the radiances / RT model.

Some of these issues are simplified by the direct assimilation 

of raw (unprocessed) radiance observations. 

Direct assimilation of radiances (II)

ESA Summer School 2010
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Further to the move away from retrievals to radiance data, 

most NWP centres are assimilating raw radiances (level-

1b/1c).

• Avoid complicated errors (random and systematic) introduced by 

(unnecessary) pre-processing such as cloud clearing, angle (limb) 

adjustment and surface corrections.

• Avoid having to change (retune) our assimilation system when the data 

provider changes the pre-processing

• Faster access to data from new platforms  (e.g. new data can be 

assimilated weeks after launch)

• Allows consistent treatment of historical data for re-analysis projects 

(ERA-40) and other climate studies

Direct assimilation of raw radiances
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Advantages of 4DVAR

 Better use is made of observations far from the centre of 

the assimilation time window (particularly important for 

satellite data).

 The inversion of radiances is constrained by the 

background and its error covariance, but also by the 

forecast model’s physics and dynamics.

Wind information can be retrieved from radiance data 

through tracing effects: 
- To fit the time and spatial evolution of humidity or ozone signals 

in the radiance data, the 4DVAR has the choice of creating 

constituents locally or advecting constituents from other areas. 

The latter is achieved with wind adjustments.

ESA Summer School 2010



21

Slide 41

Wind adjustments from radiances in 

4DVAR

Mean Analysis Difference

MET7-WV  – CONTROL

• Assimilation of passive tracer information feeds back on wind field  in a 

single analysis cycle. Small adjustments also visible in mean wind field.

Mean Analysis

(CONTROL)

200 hPa
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Slide 42

Summary of key concepts

 Satellite data are extremely important in NWP.

 Data assimilation combines observations and a priori 

information in an optimal way and is analogous to the retrieval 

inverse problem.

 Passive nadir sounders have the largest impact on NWP 

forecast skill:

- Nadir sounders measure radiance (not T,Q or wind).

- Sounding radiances are broad vertical averages of the temperature 

profile  (defined by the weighting functions).

- The retrieval of atmospheric temperature from the radiances is ill-

posed and all retrieval algorithms use some sort of prior information.

- Most NWP centres assimilate raw radiances directly due to their 

simpler error characteristics. 4DVAR is now widely used.
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