Observation quality control: methodology and applications

Pierre Gauthier

Department of Earth and Atmospheric Sciences Université du Québec à Montréal (CANADA)

Presentation at the
2010 ESA Earth Observation Summer School on Earth
system monitoring and modeling
Frascati, Italy, 2-13 August 2010

Introduction

- Nature of data received and used at operational centres
 - * Wide variety of data that come from numerous sources
 - * Many possible problems can corrupt the data
- Incorrect data can have a significant impact on the assimilation
- Data acquisition and quality control
 - Reception of the data
 - Check the quality of the data and reject data that have a high probability of being erroneous

Example: least-square fit involving an erroneous datum (from Tarantola, 2005)

Least-square fit of data: y = ax + b

Impact of an erroneous datum on the analysis

Report from a drifting buoy:p = 1012.1 hPa (10 hPa too low)

Analysis with QC in black

Analysis without QC in blue

Quality Control

Sources of errors :

- * measurement errors inherent in the instruments
- * error of representativeness
- * improperly calibrated instruments
- * incorrect registration of observations
- * data coding errors
- data transmission errors

Goals :

- reject all errors other than measurement errors
- associate predefined flags with each observation throughout its assimilation

Quality Control

Preliminary checks for individual reports :

- at decoding stage, verification of observation source and location
- hydrostatic checks for temperatures and geopotential heights from upper air soundings
- * check for limiting wind shear in wind profiles from upper air soundings
- verification of deviation from climatological values

Quality Control

Limit values for surface temperature								
	Winter			Summer				
Area	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2
45°S - 45°N	-40°C	-30°C	+50°C	+55°C	-30°C	-20°C	+50°C	+60°C
45°N - 90°N 45°S - 90°S	-90°C	-80°C	+35°C	+40°C	-40°C	-30°C	+40°C	+50°C

Limit values for surface dew-point temperature								
	Winter				Summer			
Area	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2
45°S - 45°N	-45°C	-35°C	+35°C	+40°C	-35°C	-25°C	+35°C	+40°C
45°N - 90°N 45°S - 90°S	-99°C	-85°C	+30°C	+35°C	-45°C	-35°C	+35°C	+40°C

Notations

Model state

x: model state comprising 3D and surface atmospheric

fields $(N=NV3D \times NLEVELS \times NI \times NJ \sim 10^8)$

x_b: background state (*a priori* estimate of the state of the

atmosphere)

x_t: true (unknown state) of the atmosphere

 $\varepsilon_b = \mathbf{x}_b - \mathbf{x}_t$: background error

Observations

y: observation vector (M~10⁶)

 \mathbf{y}_{t} : true observations

 $\varepsilon_0 = \mathbf{y} - \mathbf{y}_f$: observation error

Notations

Observation operator

H: observation operator producing a model equivalent of

all observations ($R^N \rightarrow R^M$)

 $\mathbf{H} = (\partial H/\partial \mathbf{x})$: Jacobian of the observation operator

(linear operator associated with an (MxN) matrix)

Error statistics

R: observation error covariance matrix (MxM)

(diag **R** = σ_o^2 observation error variances)

B: background error covariances

(diag **B** = σ_b^2 background error variances)

HBH^T: image in observation space of the background error

covariances

Information contained in innovations

- Innovation vector: $d = y H(x_b)$
 - * short-term forecast (background) contains information gained from past observations
 - * Comparison of observations against the background which is our *a priori* knowledge of the state of the atmosphere
 - * Offers a common ground against which it is possible to compare all observations

Monitoring of observations

- innovations are represented by observation types and averaged over a large number of data, binned according to different categories
- * Allows to detect systematic problems with observations

Residuals of Geopotential 71165, 71167 and 71168

July - December 1994

wrongly assigned station elevation

Residuals of Geopotential 72386 and 72488

July - December 1995

wrongly assigned station pressure

Monitoring and quality control

Statistics based on innovations (y -HX_b): example from TOVS radiances

Monitoring Web Site of the Canadian Meteorological Centre (CMC)

http://collaboration.cmc.ec.gc.ca/cmc/data_monito ring/

User: monitoring

Password: CMC

with CMC in uppercase.

Verification against the background state

• Observation departure from x_b : $d = y - H(x_b)$

$$\mathbf{y} - \mathbf{H}(\mathbf{x}_b) = \mathbf{y}_t + \varepsilon_o - H(\mathbf{x}_t + \varepsilon_b) \cong (\mathbf{y}_t - H(\mathbf{x}_t)) + \varepsilon_o - \mathbf{H}' \varepsilon_b$$
$$= \varepsilon_o - \mathbf{H}' \varepsilon_b$$

$$\langle (\varepsilon_o - \mathbf{H}' \varepsilon_b) (\varepsilon_o - \mathbf{H}' \varepsilon_b)^T \rangle = \mathbf{R} + \mathbf{H}' \mathbf{B} \mathbf{H}'^T$$

- For a single observation: $(y H(\mathbf{X}_b))^2 \cong \sigma_o^2 + \sigma_b^2$
- Need to compute H'BH'
 which can be done by a randomization method
- Observation is rejected if

$$\hat{y} = y - H\mathbf{x}_b \ge \lambda(\sigma_o^2 + \sigma_b^2)^{1/2}$$

with λ being large enough.

Difficulties that arise with the background-check procedure

Quality control based on local analyses

- Consider a set of k observations y₁, ..., y_k
- Probability of $y_1 = y_t$ assuming that all the other observations are true
- Analysis is made using all observations but y₁ and then comparing y₁ against the resulting analysis

$$\left(y - H(\mathbf{X}_a^{(k-1)})\right)^2 = \sigma_o^2 + \sigma_a^2$$

$$\hat{y} = y - H \mathbf{x}_a^{(k-1)} \ge \lambda (\sigma_o^2 + \sigma_a^2)^{1/2}$$

 To avoid contamination by erroneous data, the procedure is repeated until no more data are being rejected

17.

Dropsonde data rejected by Bgnd Check

Bayesian approach to inverse problems

Joint probability distribution function (pdf): p(x,y)

Associated marginal probability densities

$$P(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}, \quad P(\mathbf{y}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$

- * A priori pdf $P(\mathbf{x})$: probability of $\mathbf{x} = \mathbf{x}_t$
- * Example: the Gaussian case in which we know the error covariance and we have \mathbf{x}_h as the only realization of \mathbf{x} .

$$P(\mathbf{x}) = \frac{1}{C} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b)\right\}$$

x in normally distributed with mean **x**_b and covariance **B**

In absence of any other information, $\mathbf{x} = \mathbf{x}_b$ is the most probable state

19.

Similarly, for P(y), if y_0 stands for the actual observation,

P(y) : probability of $y = y_t$

Estimate of the mean : $y = y_0$

Gaussian case :

$$P(\mathbf{y}) = \frac{1}{C_2} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{y}_o)^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{y}_o)\right\}$$

* Normally distributed with mean **y**_o and covariance **R**

Bayes' Theorem

Conditional probability distribution

Probability of having \mathbf{y} given that $\mathbf{x} = \mathbf{x}_t$

$$p(\mathbf{y} \mid \mathbf{x} = \mathbf{x}_t) = \frac{p(\mathbf{x}_t, \mathbf{y})}{\int p(\mathbf{x}_t, \mathbf{y}) d\mathbf{y}} \equiv \frac{p(\mathbf{x}_t, \mathbf{y})}{P(\mathbf{x}_t)}$$

Probability of having **x** given that $\mathbf{y} = \mathbf{y}_{\circ}$

$$p(\mathbf{x} \mid \mathbf{y} = \mathbf{y}_o) = \frac{p(\mathbf{x}, \mathbf{y}_o)}{\int p(\mathbf{x}, \mathbf{y}_o) d\mathbf{x}} \equiv \frac{p(\mathbf{x}, \mathbf{y}_o)}{P(\mathbf{y}_o)}$$

Thus, $p(\mathbf{x}_t, \mathbf{y}_0) = p(\mathbf{x}_t | \mathbf{y}_0) P(\mathbf{y}_0) = p(\mathbf{y}_0 | \mathbf{x}_t) P(\mathbf{x}_t)$

Bayes' Theorem:
$$p(\mathbf{x} \mid \mathbf{y} = \mathbf{y}_o) = \frac{p(\mathbf{y} \mid \mathbf{x} = \mathbf{x}_t)P(\mathbf{x} = \mathbf{x}_t)}{P(\mathbf{y} = \mathbf{y}_o)}$$

Conditional probability

- p(x|y): probability that x= x_t given that y = y_o has been observed
 - * A posteriori probability distribution associated with that of the analysis error
- p(y|x=x_t): probability of y given that x is the true value
 - * **Hx**: estimate of the mean value of **y**.

$$\rightarrow$$
 If $\mathbf{x} = \mathbf{x}_t$, then $\mathbf{H}\mathbf{x}_t = \mathbf{y}_t$.

- * $(\mathbf{y} \mathbf{H}\mathbf{x}) = \mathbf{y}_t + \varepsilon_o \mathbf{H}\mathbf{x}_t = \varepsilon_o$
- * (y Hx) is normally distributed with zero mean and covariance R

$$p(\mathbf{y} | \mathbf{x}) = \frac{1}{C_3} \exp \left\{ -\frac{1}{2} (\mathbf{y} - \mathbf{H} \mathbf{x})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}) \right\}$$

Representation of the associated probability distributions (Rodgers, 2000) $P(\mathbf{y}|\mathbf{x})$ У 1 $\mathbf{H}\mathbf{x}_{\mathrm{b}}$ \mathbf{y}_{t} **y**o $P(\mathbf{y})$ $P(\mathbf{x})$

Mode:
$$\frac{d}{dx}(-\ln p) = -\frac{1}{p}\frac{dp}{dx} = 0 \implies \frac{dp}{dx} = 0$$

From Bayes' theorem:

$$p(x \mid y) = C \frac{\exp\left\{-\frac{1}{2}(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x})\right\} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{y} - \mathbf{y}_o)^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{y}_o)\right\}}$$

$$-\ln p(\mathbf{x}|\mathbf{y}) = J(\mathbf{x})$$

$$= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b)^T + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y}) + C$$

- In the case of Gaussian error statistics, the maximum likelihood and the minimum variance estimate coincide.
- Formulation includes the case where H(x) is nonlinear.

References

Rodgers, R.D., 2000: *Inverse Methods for Atmospheric Sounding: theory and practice*. World Scientific Series On Atmospheric and Planetary Physics, vol.2, 238 pages.

Tarantola, A., 2005: *Inverse problem theory and methods for model parameter.* SIAM, Philadelphia, USA, 342 pages.

Variational Quality Control (QC-Var)

- Dharssi et al. (1992), Ingleby and Lorenc (1993),
 Andersson and Järvinen (1999)
- Probability of having a gross error

26.

QC-Var

Definition of the cost function

$$J_o^{QC}(\mathbf{X}) \equiv J_o^{QC}(\hat{y}(\mathbf{X})) = -\ln p(y_o \mid H(\mathbf{X}))$$
 where
$$= -\ln \left(P/D + C \exp\left(-J^N(\hat{y})\right)\right)$$

$$J^{N}(\hat{y}(\mathbf{x})) = \frac{1}{2} \hat{y}^{T} \mathbf{R}^{-1} \hat{y} \equiv \frac{1}{2} \frac{(H(\mathbf{x}) - y_o)^2}{\sigma_o^2}$$

Gradient of the QC-Var cost function

$$\nabla_{\hat{y}} J_o(\mathbf{x}) = \frac{\exp(-J^N)}{\gamma + \exp(-J^N)} \nabla_{\hat{y}} J^N(\hat{y}) \equiv W_{QC} \nabla_{\hat{y}} J_o^N(\hat{y})$$

$$= W_{QC} \frac{(H(\mathbf{x}) - y_o)}{\sigma_o^2}$$

$$\nabla_{\mathbf{x}} J_o(\mathbf{x}) = \left[\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x})\right]^* W_{QC} \frac{(H(\mathbf{x}) - y_o)}{\sigma_o^2}$$

where
$$\gamma = (P\sigma_o \sqrt{2\pi})/(1-P)D$$

 W_{QC} depends on the current estimate of the state.

 A posteriori weights are then based on the departure from the analysis

28.

Representation of the QC-Var cost function (P = 0.01)

QC-Var cost function with different probabilities

of gross errors (P = 0.01 and 0.1)

Observation - Forecast $(y - H(x_b))$ AIREP temperatures Period: March-April 2002

Estimation of the probability of gross error

Distribution innovations

Gaussian:

Jaussian:

$$-\ln p(\hat{y}) = \frac{\hat{y}^2}{2\sigma_o^2} + C$$

$$\frac{\hat{y}}{2\ln p(\hat{y})} = \frac{\hat{y}}{2\sigma_o^2}$$

$$\sqrt{-2\ln p(\hat{y})} = \frac{\hat{y}}{\sigma_o}$$

Probability of gross error is obtained in the limit where

$$|\hat{y}| >> \sigma_o$$

AIREP Temperature

apdp, 1997041919970502, 00 06 12 18

(from Järvinen and Andersson, 1999)

Comparison of the two QC procedures

Obs.	Obs. Quantity	Rejection Ratio		Approxim ate		
Type		(%)		Rejection Limits		
		VarQC	OIQC	VarQC	OIQC	
SYNOP	Pressure (height)	2.7	1.9	3.6 hPa	n/a	
	(T- T _d)	0.3	0.0	8.5 K	22 K	
	Temperature	2.2	1.2	6.6 K	16.6 K	
SHIP	W ind Pressure (height)	7.6 2.3	0.5 3.5	8 m/s 8.5 hPa	19 m/s n/a	
	(T- T _d)	0.3	0.0	9.5 K	26 K	
	Temperature	1.5	0.9	5.7 K	11.7 K	
DRIBU	Pressure (height) Temperature	2.8 3.1	3.1 2.4	6.6 hPa 5.8 K	n/a 6.2 K	
TEMP	Wind	2.7	0.4	8 - 14 m/s	11 - 20 m/s	
	(T- T _d)	1.8	0.0	5 - 16 K	14 - 22 K	
	Temperature	3.0	1.3	2.1 - 6.6 K	3.4 - 9.4 K	

Obs. Type	Obs. Quantity	Rejection Ratio (%)		Approximate Rejection Limits		
		VarQC	OIQC	VarQC	OIQC	
AMDAR	Wind Temperature	1.0 0.7	0.4 0.5	11 m/s 4.0 K	15 m/s 5.0 K	
SATOB	Wind	1.3	0.2	13 - 27 m/s	16 - 36 m/s	
AIREP	Wind	5.2	1.0	13 m/s	29 m/s	
	Temperature	1.7	0.8	5.7 K	9.2 K	
ACARS	Wind	2.3	1.0	10 m/s	14 m/s	
	Temperature	1.6	2.1	4.0 K	5.0 K	

Comments

- When observation error is uncorrelated:
 - QC-Var is easy to implement and computationally inexpensive
 - * A number of iterations need to be done *without* the $W_{\mathcal{QC}}$ to correct main deficiencies that may exist in the background state (assuming the bulk of the observations to be good ones)
- Procedure aims at detecting punctual observations that may be in error
- Complexities arise when observation errors are correlated but they can be addressed (Järvinen et al.,1999)

Gaussian + flat PDF

Sum of 2 Gaussians

VarQC: pdf=(1-A)*N(0,so) + A*N(0,3*so)

(Isaksen, 2010 ECMWF)

Recent developments in variational quality control

(Isaksen, L., 2010: presentation at the ECMWF training course)

Huber norm

- * Adds some weight on observations with large departures
- * A set of observations with consistent large departures will influence the analysis

Definition of the pdf associated with the Huber norm

$$p(y|x) = \begin{cases} \frac{1}{\sigma_o \sqrt{2\pi}} \exp\left(\frac{a^2}{2} - |ad|\right) & \text{if } a < d \\ \frac{1}{\sigma_o \sqrt{2\pi}} \exp\left(-\frac{1}{2}d^2\right) & \text{if } a \le d \le b \\ \frac{1}{\sigma_o \sqrt{2\pi}} \exp\left(\frac{b^2}{2} - |bd|\right) & \text{if } d > b \end{cases}$$

with

$$d = \frac{y - H(\mathbf{X})}{\sigma_o}$$

Aircraft temperature and winds Northern Hemisphere

Huber norm distributed with some deviation for cold departures

(Isaksen, 2010 ECMWF)

Comparing observation weights:

Huber-norm (red) versus Gaussian+flat (blue)

- More weight in the middle of the distribution
- More weight on the edges of the distribution
- More influence of data with large departures
 Weights: 0 – 25%

(Isaksen, 2010 ECMWF)

27 Dec 1999 – French storm 18UTC (Example from Isaksen, 2010 ECMWF)

- •Era interim analysis produced a low with min 970 hPa
- Lowest pressure observation (SYNOP: red circle)
- -963.5 hPa (supported by neighbouring stations)
- At this station the analysis shows 977 hPa
- -Analysis wrong by 16.5 hPa!

(Isaksen, 2010 ECMWF)

Data rejection and VarQC weights (Isaksen 2010)

1112: VarQC-rejections: Flag1 (green), Flag2 (orange), Flag3 (red), MSL analysis (black)

Data rejection and VarQC weights with Huber norm formulation (Isaksen, 2010)

1362: VarQC-rejections: Flag1 (green), Flag2 (orange), Flag3 (red), MSL analysis (black)

Conclusion

- Quality control is a crucial component of any data assimilation system
- Acceptance of bad data and rejection of good data happens
 - * to avoid this as much as possible, the error characteristics need to be regularly reestimated (e.g., probability of gross error, existence of biases, background and observational error covariances).
- In 4D-Var, small changes to the analysis can lead to substantial differences in the forecast
 - Impact of accepting bad data or rejecting good ones can be significant
- Management of a huge database of information associated with the observations is technically challenging

Bias correction

(from Auligné. McNally and Dee, QJ 2007)

A quick introduction to bias correction

- Systematic errors in the analysis can be attributed to observation and/or background error
- Biases can be observed in innovations for a particular instrument
 - * If no bias is observed for other instruments, then it is likely the observations that is biased
- Principle in bias correction schemes
 - * Find a way to detect biases (e.g., monitoring) and relate it to likely causes of the source of systematic error and correct it
 - Example: systematic error associated with the scan angle of a satellite instruments.

Static bias correction

- Consider innovations d = y -H(x_b) over a period of time (order of a month)
- Modify the observation operator as

$$\tilde{H}(\mathbf{x}, \boldsymbol{\beta}) = H(\mathbf{x}) + \sum_{i=0}^{N} \beta_i P_i(\mathbf{x})$$

• Find the coefficients β by minimising

$$J(\beta) = \frac{1}{2} \left(\mathbf{y} - \tilde{H} \left(\mathbf{x}_{b}, \beta \right) \right)^{T} \left(\mathbf{y} - \tilde{H} \left(\mathbf{x}_{b}, \beta \right) \right)$$

 The quantities P_i(x) are the predictors which relate to the measurements

Predictors used for different satellite instruments

Instrument		Predictors		
AIRS	1000-300	200-50	10-1	50-5
ATOVS	1000-300	200-50	10-1	50-5
GEOS	1000-300	200-50	TCWV	
SSMI	V _s	T _s	TCWV	

- Geopotential thicknesses for the layers comprised between the pressures (in hPa)
- TCWV: total content in water vaport
- V_s : surface wind speed T_s : skin temperature

Limitations of the static scheme

- Bias is assumed to be constant over the period
 - Inappropriate to detect instrument problems
- Based on the assumption that the background error itself is unbiased

- * Background error is constrained by all observations
 - Justified where in biased of set vations are prailed to a radiosondes)

Adaptive offline scheme

Bias correction is recalibrated before every analysis

- Second term $= \frac{1}{ac} (8 = 4 \times mem dry)^T R^{-1} (8 \times mem dry)^$
 - * Could be interpreted as a static scheme applied with a running mean. $+\frac{1}{2}(\beta-\beta_b)^{\beta}\mathbf{B}_{\beta}^{-1}(\beta-\beta_b)$

Adaptive online scheme: Var-BC

Bias correction is incorporated within the assimilation scheme itself

$$J(\beta) = \frac{1}{2} (\mathbf{y} - \tilde{H}(\mathbf{x}_b, \beta))^T \mathbf{R}^{-1} (\mathbf{y} - \tilde{H}(\mathbf{x}_b, \beta))$$
$$+ \frac{1}{2} (\beta - \beta_b)^T \mathbf{B}_{\beta}^{-1} (\beta - \beta_b)$$

• More apt to distinguish between model bias and observation biases. B (X-X_b)

Auligné et al. (2007): comparaison between VarBC and static bias correction

Results for AMSU-a channel 14 (peak at 1hPa) (average over 3 weeks) Auligné et al. (2007)

No assimilation of satellite data

$$\langle \mathbf{y} - H(\mathbf{x}_a) \rangle$$

Offline bias correction

Results for AMSU-a channel 14 (average over 3 weeks) Auligné et al. (2007)

Var-BC bias correction

Var-BC bias correction using a mask

Sensitivity to temperature for different channels of AMSU-a

Conclusions

- Distinguishing between model and observation biases remains delicate
- VarBc automates the bias corrections and has shown some skill to in distinguishing between the two
- Choice of the predictors is being revisited regularly to reflect the nature of the instrument
- Long term drift may result due to the interaction between QC-Var and Var-BC (Auligné and McNally, 2007)
 - Important for reanalyses as biases in the analyses may be wrongly interpreted as a climate drift.