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e Ensemble Kalman Filter
e Balanced initialisation
e Balanced perturbations

e Parameter estimation
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Remember Optimal Interpolation

de Liege

y IS a very large vector grouping all P observation including eg,
satellite images and the state vector x is an even larger vector of M
model results,

x* = x/ + PPHT(HP'HT + R) " (y — Hx/), (1)

P® = (1-KH)P/ = (I—PfHT(HPfHT+R)-1H) Pl (2)

When repeated intermittently: control of time evolution.
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*—— Error after analysis
D

/ __\ Observational error

o

@ Forecast
O Observation
o Reinitialisation
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“";:izz‘;z Where Is the model involved ?

x* =x/ + PPHT(HP/HT + R) " (y — Hx/). (4)

e x/ updated by the model

e P/ ! Atthe very least it was updated at previous assimilation
cycle but in reality errors a advected, diffused ...

[N Gree
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The model

Xn+1 = M(X'ﬂ) + -fn + My, (5)
where 7, takes into account errors introduced by the model and f,
Includes the external forcings. n Is the assimilation cycle stepping,
not the (much finer) model time stepping.
Linearization for error analysis:
X;]fb—l—l:MX’?:L—I_fn _|_77n (6)

The true state evolves without modeling errors and obeys
X%+1:sz+fn (7)
so that the forecast error e/ = x/ — x! satisfies
€ni1=Mej, +m,. (8)

Multiplying this equation by its transposed version to the right and
using the statistical average we get the so-called Lyapunov
equation, which allows the advancement in time of the
error-covariance martrix:

GHE
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“";:izz‘;z' Error evolution

pf

f o =MP:MT + Q, =MMPY)T + Q, (9)

with the definition of the model-error covariance matrix
Q. = (n,m, ). (10)

Error covariance can be advanced in time starting from known error
on initial condition

Py = <(X0 —xg)(x0 — XB)T> : (11)
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“’Z}Ziﬁi‘gi Kalman filter

Initialisation: x5 = x

Pi = P

A

Forecast: xj;“ = ML)+ f.,

P/, = M,P‘M! +Q,

l

—1
Analysis: K, 11 = P£+1H£+1 (Hn+1P£+1H£+1 +Rn+1)

Xpt1 = Xf}]:,+1 + K1 (yn+1 — Hn+1X£+1)
Z+1 — P£+1 - Kn+1Hn+1P£+1
7110 Note nonlinear model and linear error propagation
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Toy example

0.6

0.4

0

1D advection with numerical diffusion and incorrect advection. A
fixed "observation system" is placed at node 40. Note the error
covariance increase downstream (left panel) and the model results

Improvment (right panel).
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Some slight problems

With a model of M unknowns (107) and P observations (10°)
e Size of P: M?, unable to store

e Cost of updating P: M model runs instead of 1, unable to
calculate

e Inversion of (HPfHT + R): P3: unable to calculate

e Appearance of M!: adjoint model, tricky to program and
unigue to each model

Are we stuck to toy problems ? Or to downgrade the filter ?
e fixed P/: optimal interpolation

e fixed and diagonal P/ and R: nudging (equivalent to relaxation
term in equations —(z — y)/T)

e fixed and diagonal P’/ with zero R: direct insertion

The more we simplify the more prone the filter will be to
Inconsistencies, sometimes downgrading results instead of
Improving. e
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@ One solution, Reduced-rank Kalman Filter

de Liege

IF we can write
P~SS' (12)

where S is of size M x K, K < M, then
e storage of S instead of P (cost of K model instances)

e a matrix multiplication by P (1/?) is replaced by two successive
multiplications involving S (2K M?)

If we assume a diagonal R = 21, the matrix inversion cost in the
analysis step is reduced from P3 to K3:

PHT (HSSTH™ + R) =SUT (UUT + 421) " =S (UTU + 421)  UT,

(13)
again Sherman-Morisson at work with U = HS of dimension P x K
with K < P
gl
(<>
= =

[N e

nagement



http://www.ulg.ac.be

“’Z}Ziﬁi‘gi Effect of reduced rank?
Analysis step expressed in terms of S

x* =xf +Sa, a=UTU+21)  UT (y—Hx!).  (14)

where « is a K x 1 vector: the increment is only in a space spanned

by the K columns of S. Error propagation remains also within this
space.

How to choose this space ? Remember EOFs ? Create S from
EOFs of model runs for example.
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e Ensemble Kalman Filter
e Balanced initialisation
e Balanced perturbations

e Parameter estimation
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Creating S

Instead of creating several model runs to calculate EOFs, directly
apply statistics on different model runs ! Create K model runs by
perturbing parameters (initial conditions, forcings, parameters,
topography...) and calculate

Z (15)

If we accept this as the best estimation of the true state, deviations
from this state can be used to estimate the error-covariance matrix

K
: T

= —— () _ X <) _ X) . (16)
j:1
The columns of S are directly given by the ensemble members,
shifted to have a zero mean and scaled by 1/ K — 1.
However: convergence of variance estimations from K samplings
converges only as 1/v/K: large ensemble or create ensemble with
optimal distributions of its members (Evensen 2004). GHER
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e Ensemble Kalman Filter
e Balanced initialisation
e Balanced perturbations

e Parameter estimation
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How to generate perturbations dr-itial

de Liége ., .
conditions
Too brutal perturbations will generate unrealistic model evolutions
with unrealistic high frequency motions excited. If increment creates
too much noise, filter increment !
x = x/ + FPTHT(HP'HT + R) ™ (y — Hx/). (17)

But how to design the filter F ?

2] 1]
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Example of gravity waves

de Liege

In a flat bottom shallow water system, elevation » and transports
U,V satisfy volume conservation and momentum:

oy U 9V
& = or oy 18)
oU on

ot fV—gh% (19)
oV on

. = —fU-gh=" 2
5 fU—g 5y (20)

Inadequate initialization will trigger Poincaré waves which will not
dissipate without strong friction. Fourier analysis

N(ky, ky,w) = /n(x,y,t)e_“k”Jrkyy_“’t)dxdydt (21)
3
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—if 0
M =VDV~!
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Modes

M = VDV ! where D is a diagonal matrix, with the following
elements:

wop — 0 (27)
w1 = 8 (28)
we = —S (29)

and s = /f? + ghkZ 4 ghkZ. The first solution represents the
geostrophic equilibrium and the second and third solutions are
Inertia-gravity waves, also called Poincaré waves. The
corresponding eigenvectors are the columns of the V matrix:

1 1 1
__ighky kxs+ifky _ kas—ifky
V = 7 kI h2 2Tk (30)
ighky kys—ifky _ kystifks
f k2+k2 k2+k2
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Getting rid of Poincare modes in Fourier space

The filtered quantities are denoted by a prime.

i 1 00 7
U |=v]o0oo0o0 |V U (31)
1% 0 0 0 1%

(read the formular from the right). Perfoming the matrix
multiplications yieds

f2 kay _ka:c
—ighfk, ghkg —ghkzk, | - (32)
ighfky,  —ghkzk, ghk?

Fo 1
f2 + ghk2 + ghk?2

It is sufficient to filter first the elevation 7/,

7 — £20 +ifk,U —ifk,V
f2 + ghk2 4 ghk2 ~

eeeeee
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U = 7] (35)
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In real space ?
Filter not very practical since in Fourier space.
(f? + ghkZ + ghk2) i = f2i +ifk,U —ifk,V (37)

If the inverse Fourier transform is applied to the previous equation,
one obtains a differential equation which the filtered solution must

satisfy:

. " (38)

8_2+82 12 ,_10V 10U  f?
or?  0y? gh T = hor n dy  gh

On the right-hand side of equation (38), the potential vorticity of the
flow (linearized by assuming that || < h and that the relative
vorticity iIs much smaller than the planetary vorticity) can be
recognized. The inverse Fourier transform applied to equations (35))
and (36]) gives the geostrophic equilibrium.

gl = B g SR (39)

GHER
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Um?éi; Filter in practise

Filter= calculate increment to define rhs of (38), then solve (38)) to

find filtered n” from which to deduce filtered transports.
Generalization to variable A via interpretation in terms of potential

vorticity on the rhs.
2./ 2,/ 2
o*n 0" 7,  fq (40)

972 0z gh! g

The initial potential vorticity ¢ is computed from the unfiltered
elevation and velocity by:

Jv Ou f
e 41
1= 5, "5z 1" (41)
21 [
(<>
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Initial condition

(a) Original random initial elevation
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(b) Filtered initial elevation
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x 107

Unfiltered IC and filtered IC
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Initial condition

(a) Mean elevation (original IC)
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(b) Mean elevation (filtered IC)
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Time average with unfiltered IC and filtered IC
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(a) Std. of elevation (original IC) (b) Std. of elevation (filtered IC)

e de

2

q) —200 -100 -200 -100

> — —

C x10

> Standart deviation over time with unfiltered IC and filtered IC
N~

(2111
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e Ensemble Kalman Filter
e Balanced initialisation
e Balanced perturbations

e Parameter estimation
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Generating perturbations

de Liege

In open domains, using perturbed Fourier modes leads to
perturbations who on average have covariance with Gaussian
decrease over a prescribed length scale (Evensen 2002).

Limited to periodic domains and unique length scale. If applied to
ocean, problems at coasts.
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ur;;;eng;g Generating perturbations via a functional
2J = xTM"W,,Mx + xTD'"WpDx + xTWpgx (42)
e x Will be a perturbation (around zero)

e W are weighting matrices (penalizing more or less one term)

e D is a spatial derivative operator (as in DIVA), penalizing
strong variations

e M allows to weakly enforce a constraint (eg. geostrophic
equilibrium): Mx ~ 0.
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Functional
2J =xTB'x (43)
B! =M'w,/M L
= uM +DTWpD + Wp (44)

Obviously we are not going to minimize J.

J measure how likely a perturbuation should be: large values of J
correspond to unlikely perturbations (not satisfying constraints, lot of
variability), while perturbations with low J are welcome.

Generate a series of perturbation whose probability is
proportional to exp(—J)

In practice, D and M are discrete operators which can be translated

into sparse matrices. For details, via decomposition of B™* see
papers in the folder.

GHER
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un;;e;ig; Example of realisation with varlable L

Without weak constraint but with regularity operator changing its
Intensity in space( Wp, Is diagonal with different values depending

on the location): creation of perturbation having different scales in
different regions

A AT Al 1
40 80 80 100 120 140 160 180 200
dis e (km)
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0] 30 60 90 120 150 180 9 0 30 60 90 120 160 180

distance (km)

Without weak constraint but with regularity operator implemented
with "boundary conditions” n'Dx = 0 . Here wnot a member is
shown but from the generated ensemble members we can estimate
covariances. Here for a point near the center with all other points.

Left: classical generation via Fourier modes, right. generation via
constraint version.
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de Liege

Tidally acceptable perturbations

i o @ 15

%—[Z fV - ghg—z (46)

S = U] (47)

Tidal motion with given frequency w with n = 7/ (z, y)e?
iwl’ V' — gh&—n/ (49)
ox

iwV’ —fU' — gh%—g (50)

il Can be expressed by sparse matrix operations (finite differences) as
% Mx = 0 (51)
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1 1 1 1 1 1 —
-90 -89 -88 -87 -86 -85 -84 -83 -82 -81

Covariance of the point in black with all other points using
perturbuations which must weakly satisfy tidal equations. Note the
remote correlation !
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“’IJZ‘EZ‘;Z' Example

Unphysical motions with standard perturbations and balanced perturbations

)
(@) 0.03
/
% . 0.025
q) SRS 0.02
@) - 0015
\q) o 0.01
e
" — 0.005
D
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e Ensemble Kalman Filter
e Balanced initialisation
e Balanced perturbations

e Parameter estimation
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Parameter optimisation

Unorthodox approach:

e Parameter (like wind forcing) = state variable

e Model= observing operator

With ensemble run of perturbed state (parameter), apply Kalman
filter extension using ensemble members (k)

(S);, = (x® — (x))

(52)

(53)

(54)

(95)
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“’Z}Ziﬁi‘gi Estimation

Kalman fitler approach for a better estimate of forcing field having
observed variables in your domain (question normally solved with
Inverse approaches using adjoints)

x% = x" + SET (EET +R) " (y — h(x")) (56)

Now you know how to make this expression manageable ?
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“’Z}Ziﬁi‘gi Estimation

Kalman fitler approach for a better estimate of forcing field having
observed variables in your domain (question normally solved with
Inverse approaches using adjoints)

x% = x" + SET (EET +R) " (y — h(x")) (57)

Now you know how to make this expression manageable ?
Question for the exam next week!
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SeaDataNet

Schematically

de Liege

B —0E— O

Free model run
Surface _m_> Surface
winds currents

Ensemble run

Surface _m_> Surface
winds currents
Surface
currents

perturbations

%

Observations

Surface
currents
Analysis
Surface _m_> Surface
D |:| winds currents
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Wind speed (m/s)
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Wind speed at Sylt

ECMWF (RMS=1.981 m/s)
= — — — Analysis (RMS=1.672 m/s)
| N\ Observations
- W f L
| \
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| ‘ ! " / ) . s
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. | I\ b |
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0 5 10 15 20 25 30

Days since 1 September 1991

Improved by assimilating current radar data, without adjoint model
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