

Generating balanced fields in Kalman Filtering

ESA Summer school 2010

Jean-Marie Beckers and GHER group Aida Alvera, Alexander Barth, Luc Vandenbulcke, Charles Troupin, Damien Sirjacobs, Mohamed Ouberdous

http://modb.oce.ulg.ac.be/GHER

Université de Liège
MARE-GHER Sart-Tilman B5
4000 Liège, Belgique

Outline

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

Remember Optimal Interpolation

y is a very large vector grouping all P observation including eg, satellite images and the state vector x is an even larger vector of M model results,

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}^{f}), \qquad (1)$$

$$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K}\mathbf{H}) \, \mathbf{P}^{f} = \left(\mathbf{I} - \mathbf{P}^{f} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R} \right)^{-1} \mathbf{H} \right) \mathbf{P}^{f}. \tag{2}$$

When repeated intermittently: control of time evolution.

Pan-European infrastructure (or Ocean & Marine Data Management

Extended Kalman Filter

Pan-European infrastructure for Ocean & Marine Data Management aData Net

Where is the model involved?

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}^{f}).$$
 (3)

Where is the model involved?

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}^{f}). \tag{4}$$

- ullet \mathbf{x}^f updated by the model
- P^f! At the very least it was updated at previous assimilation cycle but in reality errors a advected, diffused ...

Pan-European Infrastructure for Ocean & Marine Data Management SeaDataNet

The model

$$\mathbf{x}_{n+1} = \mathcal{M}(\mathbf{x}_n) + \boldsymbol{f}_n + \boldsymbol{\eta}_n \tag{5}$$

where η_n takes into account errors introduced by the model and f_n includes the external forcings. n is the assimilation cycle stepping, not the (much finer) model time stepping. Linearization for error analysis:

$$\mathbf{x}_{n+1}^f = \mathbf{M} \, \mathbf{x}_n^a + \boldsymbol{f}_n + \boldsymbol{\eta}_n \tag{6}$$

The true state evolves without modeling errors and obeys

$$\mathbf{x}_{n+1}^t = \mathbf{M} \, \mathbf{x}_n^t + \boldsymbol{f}_n \tag{7}$$

so that the forecast error $\epsilon^f = \mathbf{x}^f - \mathbf{x}^t$ satisfies

$$\boldsymbol{\epsilon}_{n+1}^f = \mathbf{M}\,\boldsymbol{\epsilon}_n^a + \boldsymbol{\eta}_n. \tag{8}$$

Multiplying this equation by its transposed version to the right and using the statistical average we get the so-called Lyapunov equation, which allows the advancement in time of the error-covariance matrix:

Error evolution

$$\mathbf{P}_{n+1}^f = \mathbf{M} \mathbf{P}_n^a \mathbf{M}^{\mathrm{T}} + \mathbf{Q}_n = \mathbf{M} (\mathbf{M} \mathbf{P}_n^a)^{\mathrm{T}} + \mathbf{Q}_n$$
 (9)

with the definition of the model-error covariance matrix

$$\mathbf{Q}_n = \left\langle \boldsymbol{\eta}_n \boldsymbol{\eta}_n^{\mathrm{T}} \right\rangle. \tag{10}$$

Error covariance can be advanced in time starting from known error on initial condition

$$\mathbf{P}_0 = \left\langle (\mathbf{x}_0 - \mathbf{x}_0^t)(\mathbf{x}_0 - \mathbf{x}_0^t)^{\mathrm{T}} \right\rangle. \tag{11}$$

Kalman filter

$$\mathbf{P}_0^a = \mathbf{P}^i$$

Forecast:
$$\mathbf{x}_{n+1}^f = \mathcal{M}(\mathbf{x}_n^a) + \boldsymbol{f}_n$$
 $\mathbf{P}_{n+1}^f = \mathbf{M}_n \mathbf{P}_n^a \mathbf{M}_n^T + \mathbf{Q}_n$

Analysis:
$$\mathbf{K}_{n+1} = \mathbf{P}_{n+1}^f \mathbf{H}_{n+1}^T \left(\mathbf{H}_{n+1} \mathbf{P}_{n+1}^f \mathbf{H}_{n+1}^T + \mathbf{R}_{n+1} \right)^{-1}$$
 $\mathbf{x}_{n+1}^a = \mathbf{x}_{n+1}^f + \mathbf{K}_{n+1} \left(\mathbf{y}_{n+1} - \mathbf{H}_{n+1} \mathbf{x}_{n+1}^f \right)$
 $\mathbf{P}_{n+1}^a = \mathbf{P}_{n+1}^f - \mathbf{K}_{n+1} \mathbf{H}_{n+1} \mathbf{P}_{n+1}^f$

Note nonlinear model and linear error propagation

Pan-European infrastructure for Ocean & Marine Data Management apataNet

Toy example

1D advection with numerical diffusion and incorrect advection. A fixed "observation system" is placed at node 40. Note the error covariance increase downstream (left panel) and the model results improvment (right panel).

Some slight problems

With a model of M unknowns (10⁷) and P observations (10⁶)

- Size of P: M^2 , unable to store
- Cost of updating P: M model runs instead of 1, unable to calculate
- Inversion of $(\mathbf{HP}^f\mathbf{H}^T+\mathbf{R})$: P^3 : unable to calculate
- Appearance of M^{T} : adjoint model, tricky to program and unique to each model

Are we stuck to toy problems? Or to downgrade the filter?

- fixed P^f : optimal interpolation
- fixed and diagonal \mathbf{P}^f and \mathbf{R} : nudging (equivalent to relaxation term in equations -(x-y)/T)
- fixed and diagonal \mathbf{P}^f with zero \mathbf{R} : direct insertion

The more we simplify the more prone the filter will be to inconsistencies, sometimes downgrading results instead of improving.

One solution, Reduced-rank Kalman Filter

IF we can write

$$\mathbf{P} \sim \mathbf{SS}^{\mathrm{T}}$$
 (12)

where **S** is of size $M \times K$, $K \ll M$, then

- storage of S instead of P (cost of K model instances)
- a matrix multiplication by $P(M^3)$ is replaced by two successive multiplications involving $S(2KM^2)$

If we assume a diagonal $\mathbf{R} = \mu^2 \mathbf{I}$, the matrix inversion cost in the analysis step is reduced from P^3 to K^3 :

$$\mathbf{PH}^{\mathrm{T}} \left(\mathbf{HSS}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} + \mathbf{R} \right)^{-1} = \mathbf{SU}^{\mathrm{T}} \left(\mathbf{UU}^{\mathrm{T}} + \mu^{2} \mathbf{I} \right)^{-1} = \mathbf{S} \left(\mathbf{U}^{\mathrm{T}} \mathbf{U} + \mu^{2} \mathbf{I} \right)^{-1} \mathbf{U}^{\mathrm{T}}.$$
(13)

again Sherman-Morisson at work with $\mathbf{U} = \mathbf{HS}$ of dimension $P \times K$ with $K \ll P$

Effect of reduced rank?

Analysis step expressed in terms of S

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{S}\alpha, \quad \boldsymbol{\alpha} = (\mathbf{U}^{\mathrm{T}}\mathbf{U} + \mu^{2}\mathbf{I})^{-1}\mathbf{U}^{\mathrm{T}}(\mathbf{y} - \mathbf{H}\mathbf{x}^{f}).$$
 (14)

where α is a $K \times 1$ vector: the increment is only in a space spanned by the K columns of **S**. Error propagation remains also within this space.

How to choose this space? Remember EOFs? Create **S** from EOFs of model runs for example.

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

Pan-European infrastructure for Ocean & Marine Deta Management leaDataNet

Creating S

Instead of creating several model runs to calculate EOFs, directly apply statistics on different model runs! Create K model runs by perturbing parameters (initial conditions, forcings, parameters, topography...) and calculate

$$\bar{\mathbf{x}} = \frac{1}{K} \sum_{j=1}^{K} \mathbf{x}^{(j)}.$$
 (15)

If we accept this as the best estimation of the true state, deviations from this state can be used to estimate the error-covariance matrix

$$\mathbf{P} = \frac{1}{K-1} \sum_{j=1}^{K} \left(\mathbf{x}^{(j)} - \bar{\mathbf{x}} \right) \left(\mathbf{x}^{(j)} - \bar{\mathbf{x}} \right)^{\mathrm{T}}.$$
 (16)

The columns of **S** are directly given by the ensemble members, shifted to have a zero mean and scaled by $1/\sqrt{K-1}$. However: convergence of variance estimations from K samplings converges only as $1/\sqrt{K}$: large ensemble or create ensemble with optimal distributions of its members (Evensen 2004).

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

How to generate perturbations or initial conditions

Too brutal perturbations will generate unrealistic model evolutions with unrealistic high frequency motions excited. If increment creates too much noise, filter increment!

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{F}\mathbf{P}^{f}\mathbf{H}^{T}(\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} + \mathbf{R})^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}^{f}). \tag{17}$$

But how to design the filter F?

Example of gravity waves

In a flat bottom shallow water system, elevation η and transports U, V satisfy volume conservation and momentum:

$$\frac{\partial \eta}{\partial t} = -\frac{\partial U}{\partial x} - \frac{\partial V}{\partial y} \tag{18}$$

$$\frac{\partial U}{\partial t} = fV - gh \frac{\partial \eta}{\partial x} \tag{19}$$

$$\frac{\partial U}{\partial t} = fV - gh \frac{\partial \eta}{\partial x}$$

$$\frac{\partial V}{\partial t} = -fU - gh \frac{\partial \eta}{\partial y}$$
(19)

Inadequate initialization will trigger Poincaré waves which will not dissipate without strong friction. Fourier analysis

$$\tilde{\eta}(k_x, k_y, \omega) = \int_3 \eta(x, y, t) e^{-i(k_x x + k_y y - \omega t)} dx dy dt \qquad (21)$$

Poincare modes

$$-i\omega\tilde{\eta} = -ik_x\tilde{U} - ik_y\tilde{V} \tag{22}$$

$$-i\omega \tilde{U} = f\tilde{V} - ighk_x\tilde{\eta} \tag{23}$$

$$-i\omega\tilde{V} = -f\tilde{U} - ighk_y\tilde{\eta} \tag{24}$$

$$\omega \begin{pmatrix} \tilde{\eta} \\ \tilde{U} \\ \tilde{V} \end{pmatrix} = \begin{pmatrix} 0 & k_x & k_y \\ ghk_x & 0 & if \\ ghk_y & -if & 0 \end{pmatrix} \begin{pmatrix} \tilde{\eta} \\ \tilde{U} \\ \tilde{V} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \tilde{\eta} \\ \tilde{U} \\ \tilde{V} \end{pmatrix}$$
(25)

$$\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} \tag{26}$$

Modes

 $\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ where \mathbf{D} is a diagonal matrix, with the following elements:

$$\omega_0 = 0 \tag{27}$$

$$\omega_1 = s \tag{28}$$

$$\omega_2 = -s \tag{29}$$

and $s = \sqrt{f^2 + ghk_x^2 + ghk_y^2}$. The first solution represents the geostrophic equilibrium and the second and third solutions are inertia-gravity waves, also called Poincaré waves. The corresponding eigenvectors are the columns of the ${\bf V}$ matrix:

$$\mathbf{V} = \begin{pmatrix} 1 & 1 & 1 \\ -\frac{ighk_y}{f} & \frac{k_x s + ifk_y}{k_x^2 + k_y^2} & -\frac{k_x s - ifk_y}{k_x^2 + k_y^2} \\ \frac{ighk_x}{f} & \frac{k_y s - ifk_x}{k_x^2 + k_y^2} & -\frac{k_y s + ifk_x}{k_x^2 + k_y^2} \end{pmatrix}$$
(30)

Getting rid of Poincare modes in Fourier space

The filtered quantities are denoted by a prime.

$$\begin{pmatrix} \tilde{\eta}' \\ \tilde{U}' \\ \tilde{V}' \end{pmatrix} = \mathbf{V} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{V}^{-1} \begin{pmatrix} \tilde{\eta} \\ \tilde{U} \\ \tilde{V} \end{pmatrix}$$
(31)

(read the formular from the right). Perfoming the matrix multiplications yieds

$$\mathbf{F} = \frac{1}{f^2 + ghk_x^2 + ghk_y^2} \begin{pmatrix} f^2 & ifk_y & -ifk_x \\ -ighfk_y & ghk_y^2 & -ghk_xk_y \\ ighfk_x & -ghk_xk_y & ghk_x^2 \end{pmatrix}.$$
(32)

It is sufficient to filter first the elevation $\tilde{\eta}'$,

$$\tilde{\eta}' = \frac{f^2 \tilde{\eta} + i f k_y \tilde{U} - i f k_x \tilde{V}}{f^2 + g h k_x^2 + g h k_y^2},\tag{33}$$

Filter in Fourier space

Use

$$\tilde{\eta}' = \frac{f^2 \tilde{\eta} + i f k_y \tilde{U} - i f k_x \tilde{V}}{f^2 + g h k_x^2 + g h k_y^2},\tag{34}$$

and then compute the filtered transport by the following equations:

$$\tilde{U}' = -\frac{ighk_y}{f}\tilde{\eta}'$$

$$\tilde{V}' = \frac{ighk_x}{f}\tilde{\eta}'$$
(35)

$$\tilde{V}' = \frac{ighk_x}{f}\tilde{\eta}' \tag{36}$$

In real space ?

Filter not very practical since in Fourier space.

$$\left(f^2 + ghk_x^2 + ghk_y^2\right)\tilde{\eta}' = f^2\tilde{\eta} + ifk_y\tilde{U} - ifk_x\tilde{V}$$
(37)

If the inverse Fourier transform is applied to the previous equation, one obtains a differential equation which the filtered solution must satisfy:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \frac{f^2}{gh}\right)\eta' = \frac{1}{h}\frac{\partial V}{\partial x} - \frac{1}{h}\frac{\partial U}{\partial y} - \frac{f^2}{gh}\eta\tag{38}$$

On the right-hand side of equation (38), the potential vorticity of the flow (linearized by assuming that $|\eta| \ll h$ and that the relative vorticity is much smaller than the planetary vorticity) can be recognized. The inverse Fourier transform applied to equations (35) and (36) gives the geostrophic equilibrium.

$$U' = -\frac{gh}{f} \frac{\partial \eta'}{\partial y} \quad V' = \frac{gh}{f} \frac{\partial \eta'}{\partial x} \tag{39}$$

Filter in practise

Filter= calculate increment to define rhs of (38), then solve (38) to find filtered η' from which to deduce filtered transports. Generalization to variable h via interpretation in terms of potential vorticity on the rhs.

$$\frac{\partial^2 \eta'}{\partial y^2} + \frac{\partial^2 \eta'}{\partial x^2} - \frac{f^2}{gh} \eta' = \frac{fq}{g} \tag{40}$$

The initial potential vorticity q is computed from the unfiltered elevation and velocity by:

$$q = \frac{\partial v}{\partial y} - \frac{\partial u}{\partial x} - \frac{f}{h}\eta \tag{41}$$

Pan-European infrastructure for Ocean & Marine Data Management apataNet

Initial condition

Unfiltered IC and filtered IC

Pan-European infrastructure (or Ocean & Marine Data Management

Initial condition

Time average with unfiltered IC and filtered IC

Pan-European infrastructure for Ocean & Marine Date Management

Initial condition

Standart deviation over time with unfiltered IC and filtered IC

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

Generating perturbations

In open domains, using perturbed Fourier modes leads to perturbations who on average have covariance with Gaussian decrease over a prescribed length scale (Evensen 2002). Limited to periodic domains and unique length scale. If applied to ocean, problems at coasts.

Pan-European Infrastructure for Ocean & Marine Data Management DataNet

Generating perturbations via a functional

$$2J = \mathbf{x}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{W}_{M} \mathbf{M} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \mathbf{W}_{D} \mathbf{D} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \mathbf{W}_{E} \mathbf{x}$$
(42)

- x will be a perturbation (around zero)
- W are weighting matrices (penalizing more or less one term)
- D is a spatial derivative operator (as in DIVA), penalizing strong variations
- M allows to weakly enforce a constraint (eg. geostrophic equilibrium): $\mathbf{M}\mathbf{x} \sim 0$.

Functional

$$2J = \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{x} \tag{43}$$

$$\mathbf{B}^{\mathsf{T}1} = \mathbf{M}^{\mathsf{T}} \mathbf{W}_{M} \mathbf{M} + \mathbf{D}^{\mathsf{T}} \mathbf{W}_{D} \mathbf{D} + \mathbf{W}_{E}$$
 (44)

Obviously we are not going to minimize J.

J measure how likely a perturbuation should be: large values of J correspond to unlikely perturbations (not satisfying constraints, lot of variability), while perturbations with low J are welcome.

Generate a series of perturbation whose probability is proportional to $\exp(-J)$

In practice, **D** and **M** are discrete operators which can be translated into sparse matrices. For details, via decomposition of **B**⁻¹ see papers in the folder.

Pan-European Infrestructure for Ocean & Manine Data Management SeaDataNet

Example of realisation with variable L

Without weak constraint but with regularity operator changing its intensity in space (\mathbf{W}_D is diagonal with different values depending on the location): creation of perturbation having different scales in different regions

Pan-European Infrestructure for Ocean & Marine Data Management SeaDataNet

Example

Without weak constraint but with regularity operator implemented with "boundary conditions" $\mathbf{n}^T\mathbf{D}\mathbf{x}=0$. Here wnot a member is shown but from the generated ensemble members we can estimate covariances. Here for a point near the center with all other points. Left: classical generation via Fourier modes, right: generation via constraint version.

Tidally acceptable perturbations

$$\frac{\partial \eta}{\partial t} = -\frac{\partial U}{\partial x} - \frac{\partial V}{\partial y} \tag{45}$$

$$\frac{\partial U}{\partial t} = fV - gh \frac{\partial \eta}{\partial x} \tag{46}$$

$$\frac{\partial V}{\partial t} = -fU - gh\frac{\partial \eta}{\partial y} \tag{47}$$

Tidal motion with given frequency ω with $\eta = \eta'(x,y)e^{i\omega t}$

$$i\omega\eta' = -\frac{\partial U'}{\partial x} - \frac{\partial V'}{\partial y} \tag{48}$$

$$i\omega U' = fV' - gh\frac{\partial \eta'}{\partial x}$$
 (49)

$$i\omega V' = -fU' - gh\frac{\partial \eta'}{\partial y} \tag{50}$$

Can be expressed by sparse matrix operations (finite differences) as

Pan-European infrastructure (or Ocean & Marine Data Management

Example, west Florida coast

Covariance of the point in black with all other points using perturbuations which must weakly satisfy tidal equations. Note the remote correlation!

Pan-European Infrestructure for Ocean & Menine Bate Menagement SeaDataNet

Example

Unphysical motions with standard perturbations and balanced perturbations

- Kalman Filter
- Ensemble Kalman Filter
- Balanced initialisation
- Balanced perturbations
- Parameter estimation

Parameter optimisation

Unorthodox approach:

- Parameter (like wind forcing) = state variable
- Model= observing operator

With ensemble run of perturbed state (parameter), apply Kalman filter extension using ensemble members (k)

$$(\mathbf{S})_k = \frac{1}{\sqrt{N-1}} \left(\mathbf{x}^{(k)} - \langle \mathbf{x} \rangle \right) \tag{52}$$

$$\left(\mathbf{E}\right)_{k} = \frac{1}{\sqrt{N-1}} \left(h\left(\mathbf{x}^{(k)}\right) - \langle h\left(\mathbf{x}\right) \rangle \right) \tag{53}$$

$$\mathbf{SE}^{\mathrm{T}} = \mathbf{COV}(\mathbf{x}^b, h(\mathbf{x}^b)) \tag{54}$$

$$\mathbf{E}\mathbf{E}^{\mathrm{T}} = \mathbf{COV}(h(\mathbf{x}^b), h(\mathbf{x}^b)) \tag{55}$$

Estimation

Kalman fitler approach for a better estimate of forcing field having observed variables in your domain (question normally solved with inverse approaches using adjoints)

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{S}\mathbf{E}^{\mathrm{T}} \left(\mathbf{E}\mathbf{E}^{\mathrm{T}} + \mathbf{R}\right)^{-1} \left(\mathbf{y} - h(\mathbf{x}^{b})\right)$$
 (56)

Now you know how to make this expression manageable?

Estimation

Kalman fitler approach for a better estimate of forcing field having observed variables in your domain (question normally solved with inverse approaches using adjoints)

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{S}\mathbf{E}^{\mathrm{T}} \left(\mathbf{E}\mathbf{E}^{\mathrm{T}} + \mathbf{R}\right)^{-1} \left(\mathbf{y} - h(\mathbf{x}^{b})\right)$$
 (57)

Now you know how to make this expression manageable? Question for the exam next week!

Pan-European infrastructure for Ocean & Marine Data Management SeaDataNet

Schematically

Pan-European Infrestructure for Ocean & Manine Data Management SeaDataNet

Example

Pan-European infrastructure for Ocean & Marine Data Management apataNet

Wind field

Improved by assimilating current radar data, without adjoint model

Pan-European infrastructure for Ocean & Marine Deta Management SeaDataNet

Summary

- Kalman filtering with necessary simplifications
- Ensemble approach
- Problem of balances

Questions? More details in .pdf files

