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Generalisations and other names

Empirical orthogonal functions (EOFs)

Proper orthogonal decomposition (POD)

Kar

Aunen-

oeve

decompositions (best to start from for

non-uniform data distribution)

Proper orthogonal modes (POM)

Principal component analysis (PCA)
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Classical approach

e We assume that we have a matrix X containing the

observations, which is arranged such that the element i, 5 of
the matrix is called (X),; and is given by the value of the field

f(r,t) atlocation r; and moment ¢; :
(X);; = f(ri,t5). (1)

The field f is an observational field and contains thus all errors
(instrumental, unresolved structures, etc).

We can then write the matrix as a succession of n column
vectors

X = (Xl,XQ,...,Xn) ) <2)

each of the column vectors x; being the discrete state vector
of size m at moment ¢;.

GHE
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U,m?éi; Defining a mode

Try to find a spatial structure u which represents at best the data:

Maximize norm of X' u with normalization constraint on u.

Try to find the direction in which the data have their largest
component.

Find extrema of functional J with Lagrange multiplier

J=uTXX"u— )\ (u'u—1) (3)
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Euler-Lagrange equation

e Variations in (3)) on u:

e Variations on \

EOFs are normalized eigenvectors of "covariance'® matrix

X XTwhich is a symmetric positive defined matrix: real positive
eigenvalues and orthogonal eigenvectors:

N\ = p? conventionally p; > 0 and p;.1 < p; (6)

uiTuj — (51']' (7)

Storing u; as columns in U yields UTU = |

@7 7 because missing 1/n. Observe time summation to get

spatial covariances

GHE
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Un‘;ﬁ; Temporal amplitudes

What is the temporal evolution g; of the amplitudes of a mode u; ?
See it as minimizing the norm of X — ujng

g = X' u; (8)

Projection of data of a given moment onto the spatial mode u;

[N e
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Ur:jl\e/irlsél;: Tempora.l mOdeS

Using temporal covariances X' X instead of spatial covariances
XX' yields temporal EOFs :

X Xv = pv (9)
viv=1 (10)
vViv =1 (11)

Link between spatial and temporal modes? Yes, easily proven via
SVD decomposition of a matrix

[N e
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Singular value decomposition of a data matrix X:
q
X=UDV" =Y pruvy (12)
k=1

leads to
e spatial (U) and temporal (V) EOFs (orthonormal)
e singular values p; (stored on the diagonal of D)
They are also solution of

Xv = pu XX'u = p2u

= 13
XX v = pv (13)

X u=pv,

Spatial and temporal modes can be obtained via SVD
decomposition!

GHER
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e Conventionally (positive) singular values are ordered by
decreasing value.

e A given mode j contributes to the explained variance as the
squared norm of ujp,v; ", ie: p?.

e The total variance in the data (squared norm of X) equals the
sum of all squared singular values:

q
trace (XX™") = trace(X"X) =||X||3 = > p}. (14)
k=1

IS a measure of the total variance (also sometimes abusively
called energy) in the system. The ratio f, = p;/> [ _, pi is
thus a measure of the variance contained in mode £ compared
to the overall energy and one often says that mode k explains

vl 100 f5 % of the variance and that the first K modes explain
<] 100 S0, p2/ S22 p2 % of the total variance.

[N e
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Properties

The first p modes define thus the best base using p base
vectors in which the data can be expressed with minimum loss
of information.

Truncation can be used to filter data by rejecting modes.

First modes often have physical meaning, the following less
(due to orthogonality constraint).

EOF very efficient for standing patterns, less for propagating
features (try to generate synthetic data and look at SVD
decomposition).

Space and time can be interchanged.

Calculate eigenvalues on smallest covariance matrix,
eigenvalues are the same !

No explicit information on "distance" or "time", only
convariances are relevant.

Data can be reordered without changing the EOFs.
2D spatial data can be packed into 1D arrays.

GHER
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Truncation
N
XN = UNDNVNT = Zpkukvg (15)
k=1

IS the best approximation to X using only N spatial modes

The covariance matrix XX* can also be approximated by using the
truncated representation of X

XnXnT = UnDnVa " VaDnTUNT = UnDNDNTUNT = 00 (16)

where U is matrix Uy where each column is multiplied by the
associated singular value.

This reduced rank covariance matrix is specially usefull in Data
Assimulation (see lesson 3 )

Truncation rejects some data as noise, hence SVD can be
used as filtering tool

GHER
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Generalisations

Values of the state vector can accommodate complex values,
allowing complex EOF on 2D vectors (horizontal velocities,
gradients ...), Fourrier transforms, Hilbert transforms, etc

Multivariate EOFs

dimensional form)

xT = (T",8",pT,...) (needs proper non

SSA, lagged covariances to detect autocorrelations in time

/$1 X2 I3

o T3 T4

-

e MSSA, temporally lagged spatial fields

(X1 Xo X3

Xo X3 X4

s

a

X1

xk—l)

o \

X1

Xk—l)

: (17)
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Applications

Analysis of variability

Data compression
Filtering
Data synthesizing

Model intercomparison (time-space error distinctions,

phase-amplitude error distinctions)

Objective analysis (or optimal interpolation) of in-situ data: use
of vertical EOFs and horizontal objective analysis of their
amplitudes to reduces the number of data during the costly
optimal interpolation

Reducing the size of a problem by projecting (complex)
reference model equations onto a small number of Principal
Components

Simplify forecasts| by using any extrapolation method (neural
networks, genetic algorithms etc) on temporal modes

Ensemble preparation for assimilations

GHE
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“";:izz‘;:' The Problem

EOFs and friends are powerful tools to analyse data and reduce the
dimensionality of a problem. However, the decomposition assumes
the data matrix X (or continuous function f) to be known.

Missing data must be imputed before performing EOF analysis
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@ Filling data in before EOF calculatio

Data filling scene by scene: spatial interpolation as described in
Lesson1 [ .

e Distance weighting
e Optimal interpolation with presribed covariance function
e DIVA

Problems:

e Cost: each scene with ~ 107 data points and Ol cost
prohibitive. Hence suboptimal Ol.

e Covariance used for spatial interpolation will generally be
Inconsistent with covariance (16).
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@ Filling data in before EOF calculatiol

Data filling scene by scene: spatial interpolation as described in
Lesson1 [ .

e Distance weighting
e Optimal interpolation with presribed covariance function
e DIVA

Problems:

e Cost: each scene with ~ 107 data points and Ol cost
prohibitive. Hence suboptimal Ol.

e Covariance used for spatial interpolation will generally be
Inconsistent with covariance (16).

Was there not the idea of EOFs being related to covariances?

[N e
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Use EOF for filling in

IF we knew EOFs, we could use the covariance® matrix matrix B
retrieved from EOFs series ([16]) for use within Ol

B=L1UyDnDn'Un" (19)

Truncation of data means that covariance matrix only represents
"signal”, the rejected data is "noise". Hence for Ol we need to take
Into accound noise with its covariance matrix R, diagonal for
simplicity.

Ol interpolation x“ of a given scene with available data y and
observation matrix® H:

x* = BHT(HBHT + R) 'y (20)

Problem: size of matrix to invert

“Here we need to work with real covariance matrices, hence

introduction of 1/n
®Simple matrix with zeros and ones only at data location

GHE
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Final step

We need to calculate
x* = BHT(HBH" +R) 'y

where
B=L1UyDnDn'Un"

Define L, = ﬁHUNDN and L = ﬁUNDN so that
x = LL, " (L,L," +R) 'y

Application of (21):

x* = L(L,"R'L, +1) L,"R™y

Now size of the matrix to invert: NV number of modes retained

Instead of P number of observations !

(22)

(23)

(24)

(25)
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Interpretation with uniform noise R = /°l

-1
x% = L(LpTLp + /,L2|) L'y (26)

Combination of spatial modes contained in L which fit best the data
In a least square sense Iin the presence of noise.

Note that the error covariance of the analysis is also available from
Ol theory:

P* — (1-BH"(HBH" + R) 'H) B (27)
which leads to
Pa — LLT . L(LpTLp _|_ ,LL2I)-1LPTLPLT (28)

or
-1

P =p’L(L, Ly + 1) L' (29)
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@ Chicken or egg question

de Liege

Yet even with simplified Ol, circular dependance since EOF needed
for interpolation and interpolated field needed to calculate EOFs

e iterate: first guess on EOFs, filling, recalculate EOFs, refill ...

e EOFs from other sources: models, reorthogonalized
eigenvector of data-covariance matrix (using only present
data)

In all cases, even with simplified Ol, still expensive. Also destroying
space-time symmetry of original SVD.

[N e
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Data INterpolating EOF: DINEOF interp\lln

de Liege

e Large scale EOFs should not be influenced by local changes
In the values of a few points

e Large scale EOFs can thus be estimated by using a first guess
of missing data

e Then, once the larger scale EOFs and their amplitudes are
estimated, they can serve to calculate the value of the field at
the missing points by

(Xa)ij = (UNDNVNT) L — Zpk (Uk)z (Vg)j ; (30)

tJ
k=1

e EOFs themselves can be re-evaluated and the process can be
repeated until convergence.

e What is the optimal number N of relevant EOFs to be retained
21 to recompose the signal at the missing data points ?

[N e
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e Set aside a random set of valid data (random points or random
clouds).

e Use the EOF interpolation and calculate an error estimate
based on the rms distance between the interpolated field at
these points and the data set aside there

e Start with 1 EOF, fill in, calculate rms error, continue by filling
In with a second EOF until convergence, calculate rms error ...

e Provides reconstruction error as a function of number of EOF
retained.

e The optimal truncation is the one that minimises the diagnosed
error.

Once the optimal number know, perform a last iteration with this

number of EOFs reinjecting the data set aside for cross-validation.
gl
(<>
= =
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e Implementation much more rapid than Ol version.
e Problem: no natural error maps in DINEOFs

Error maps:
e Use error estimate from Ol version (29))

e Numerical verification that difference OI-DINEOF is smaller
than this error

e Can also be exploited to detect strange pixels in original data
(outlier detection using spatial covariances)

CANNOT see things under clouds which are due to patterns never
seen before (EOF are exploiting past pattern)

Operational use (daily 10 day period based on last six month EOFs):
http://gher-diva. phys. ul g. ac. be/ DI NECH di neof . ht m

GHE
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Urmrig;:' Real application Adriatic Sea

e AVHRR from
http://satftp.soest. hawal|.edu/adriatic/Adriatic/htm/
e Images with more than 90% cloud coverage were excluded
e 105 night images retained (n = 105) from Julian day 130 to 294
e Average cloud coverage is 52%

e Maximum number of data pixel/image is 94755 (m)

singular values

- — s SR
i w S
e 3 Cross validation (V = 10) and convergence
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“’Z}Ziﬁi‘gi Validation

Validation: a second experiment
e 20 images that contain a 18% average cloud coverage

e On those images, additional virtual clouds were added to
obtain a 58% cloud coverage

e The same procedure was applied

e Results are compared to the real data that were virtually
clouded

rms error of 0.22 ° was found.

rrrrrrrrrrrrrrr (from cross validation)
. . . .

||||||||||||||



http://www.ulg.ac.be

14°E 18°E

V4

IVersite

VRN N

Un

\_/
21 {1
(<>
=
DINEOF %4%15 —p. 32/60



http://www.ulg.ac.be

05-Sep

First three modes
1) Seasonal cycle with lower variations in the eastern part (87%)
2) WAC outflow and north-south difference (7%)
3) Po plume (2%)

Observe modulation of Eastern Adriatic Current from the lonian Sea

Université d
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43°N

41°N

14°E 18°E

a) difference unclouded points before EOF reconstruction (rms
0.71°)

b) difference unclouded points after EOF reconstruction (rms
0.69°)

c) difference clouded points after EOF reconstruction (rms 0.95°)

Université de

N~

%% Standard Ol has larger errors (1.8°, 2.4 °) and Ol with EOF-based

=T covariance similar errors.
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Examples (II)

MERIS TSM 13/4/2003 original data mg/l

= 0.1
ﬂ .
filled data mg/I
D - 100
g 2 52
- 10
D 51
Truncated EOF series: noise reduced [ 1
50
-2 0 2 4
[ (1
[<D>]
E=T—1

(GQER
DINEOF /== - p. 35/60
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Error maps will be calculated for Outliers (pixels with value larger than
TSM reconstructions using: the statistically expected misfit

i) the EOF basis from DINEOF as calculated during the analysis) will be
background covariance objectively identified and removed from
ii) the location of valid data initial data

initial data

MERIS CHL 18/10/2003 original data pg/l

@ 22 bt
\q) 10
A 1
L
GJ 0.1
P ‘
C 0.3 3
) 2
0.6 3
=0 35 0 e °
~——"EXxploits spatial information, contrary to most QC procedures in
10 inversion.
[<]>]
==
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Typical TSM distribution

5 10 1l5 2‘0 2I5 SIO
log-transformed TSM distribution
X 104

V4

ok empirical transformation function

0 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Transforming TSM data to a normal-distributed variable can
help to obtain better results with DINEOF

IVEISIlE C

Gaussian anamorphosis transformations (empirical 2
transformations) will be tested 3

100

Un

anamorphosis-transformed TSM distribution

X 104 transformed distribution by anamorphosis

\/

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Can be used to enforce positive values.

=
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“’Z}Ziﬁi‘gi DINEOF

e Self-coherent interpolation method and EOF calculation
e No calibration or a prior: information needed
e Cross validation possibility

e Better representation of fundamental EOFs structures for
assimilation and prediction

e Computationally efficient when m > n

Questions? More in papers joinded.
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Karhunen-Loeve decomposition

e Given a (complex) function f(r,t) of position » and time ¢ @

e find a normalised spatial function «(r) that is on (time) average
closestto f(r,t)

e so that function f(r,t) can be approximated by this spatial
function multiplied by a amplitude that evolves in time.

fr,t) ~ g(t)u(r)

I(’LL)E/ |/f(r,t)u*(r)dr

dt (31)

Maximize I(u) with a normalisation constraint on «

where u* Is the complex conjugate of w.

a . . . .
Or any other parameter, even a random parameter, i.e. f being a realisation of

an experiment. We assume f to be an anomaly compared to a reference situation

GHER
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Variational approach

I(u) = / | / F(r, t) w*(r)dr

Find extremas of J(u, \)

2 dt:/ [/f('r,t)u*('r)d'r/f*(r’,t)u(r’)dr’] dt
(32)

T(u,\) = / / / Flr ) u(r) £ (', t) u(r’) drdr'dt—\ [ / u(r)u*(r)dr—l]

(33)
A being the (real) Lagrange multiplier associated with the
normalisation constraint

/u('r)u*('r) dr =1 (34)

Variation of A will lead to constraint (34)) and variations of u by
standard |variational approach .
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\ —2)\§R/u('r) du”(r)dr
@ +0(6u)? =
GE) 23%/{// f(r,t)f*(r’,t)u(r’)dr’dt—)\u(r)}6u*('r)dr
D +0(6u)?

Extremum if J(u + du, A) — J(u, \) = 0 for any arbitray change éu
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Euler Lagrange Equations

//f(r,t)f*(r’,t)dtu(r’)dr’ = \u(r) (35)

with the normalisation constraint (from Jj\):

/u(r)u*(r) dr =1 (36)

u 1S an eigenfunction of the Kernel (Hermitien in our case) which is
the covariance function [ f(r,¢)f*(+',t) dt and X the eigenvalue.

There several solutions and we note u;, the k" eigenfunction (with
eigenvalue \).
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Properties

Eigenfunctions with different eigenvalues are orthogonal in the

SENSE
/uk('r)u?(r) dr = 5kl

There exist a countably infinite number of eigenvalues

= | [ st yuirar

Function f can be developped in terms of u;

2
dt >0

oty =Y gt uslr),  gh(t) = / a(r)f(r, £) dr
k

(37)

(38)

(39)
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“";:izz‘;z' Series

Since )\, > 0, we note p,, = v\, (later called singular values) and
sort them so that

P1 > P2 > P32 oo 2 Pr 2 Pgl = - (40)

) = i us(r),  gi(t) = / () frtydr  (41)

If we normalize the temporal functions also

1 1
v (t) = t) = — g (t 42
k(%) \/f TR gr (1) \/)\—kgk( ) (42)
SO that
il / v (g () dt" =1 (43)
=
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2

dt

Total variance
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//f("‘,t)f*(r,t)drdt:gpi

ps: part of the variance explained by mode k.
N——"

GHER
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“'2:122;2@ Practical use

Most of the time, function f is not known but measured of modelled
by a numerical model.

Discretise the eigenvalue problem assuming f to be given
at discrete points

Alternative: use directly discrete sets of data and try to find basis
vectors (of finite dimension) the best fit the discrete data set on
average

[N e
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e We assume that we have a matrix X containing the
observations, which is arranged such that the element i, 5 of
the matrix is called (X),; and is given by the value of the field

f(r,t) atlocation r; and moment ¢; :
(X);; = f(ri,t5). (47)

e The field f is an observational field and contains thus all errors
(instrumental, unresolved structures, etc).

e \We can then write the matrix as a succession of n column
vectors

X = (Xl,XQ,...,Xn) y <48)

each of the column vectors x; being the discrete state vector
of size m at moment ¢;.

gl _ . .
<] u. discrete eigenvector (of size m)
= =

[N e
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Discretised eigenvalue problem

de Liege

/f(r,t)u*(fr)dr —u'X (49)

where u?! is the transposed conjugate of the column vector u

/u(r)u*(r) dr —u'u (50)

// flr ) f (' ) ur) dr'dt = Au(r) - XXTu=u|  (51)

gh(t) = / wi(r)f(r, 1) dr — gF = uTX (52)
(£) = —— g () — prvi = Xu (53)
Vg = —(F——0k PeVE = k
70 VA
Ié-lgl and Xv, = PrUE and XTX Vi = pivk

[N e
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XX'u=p’u, sizem (54)

X'Xv =p?v, sizen (55)

showing that the spatial modes u are the eigenvectors of the
time-averaged covariance matrix XX* while v are the eigenvectors

of the spatially-averaged covariance matrix X* X.
Eigenvectors are normalised, and by virtue of egs. and (55)
(Hermitien eigenvalue problem), orthogonal:

u;ful = 5kzl7 ngl = 5kl7 (56)
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SVD

Only ¢ = min(m, n) non-zero singular values and series
decomposition (44)) is now a matrix decomposition:

q
X=UDV" =Y prupvy (57)
k=1

where we have, as for matrix X, defined matrices U and V so that
they have as columns £ the eigenvectors u; and v, respectively,
corresponding to the singular value p;.. Matrix D Is then a
rectangular matrix whose sole non-zero values are on its diagonal
and (D)kzl = pkdkl-

This is the Singular Value Decomposition (SVD) of matrix X.
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SVD decomposition for non-unifort
distribution

//f (', t)dtu(r’) dr’ = Xu(r) (58)

If data are not uniformely distributed, one can recast the problem
Into the (uniform) discretised space £ and discretised time 7 if the
position of the points to not change in time: i.e. » = (&) and if time
stepping is identical for all spatial points. I.e. ¢t = t(n). Then integrals

are modified by a change of variables and Jacobiens 7 = |g—2 and
=8

| [ rems @ mxoanue) 7€) =rue 69
Asuming well behaved coordinate transformations (and suitable

choice of signs) £ > 0 and .7 > 0 so that one can recast the problem
as follows

GHER

nagement
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SVD decomposition for non-unifortt
distribution

[ [sensr @ nxmane) 7€) =rae o0

[ [VT@KG &) £(€ . T€Ki0) dny [T (€ute') g’ = 2V TEute

(61)
Defining f = /7K f and @ = v/ J u one recovers the standard form
which can then be discretised and solved by SVD decomposition. In
practice it amounts at modifying the data matrix X by pre- and
postmultiplying by a diagonal matrix whose elements are the
sguare-roots of the jacobiens (or griz size). After SVD
decomposition, the "real" EOF can be recoverd by multiplying the
eignevectors by a diagonal matrix whose elements are the inverse
of the square roots of the Jacobian.

Back to EOFs

GHER
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