
Some applications of climate Data Assimilation

• Really two half lectures;

• An example of data assimilation for climate and

biogeochemistry;

• An unfinished approach to model ensembles and a lesson on

why it’s sometimes good to go back to first principles.
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”It’s only a model”

(Monty Python and the Holy Grail)



Papers

• This submitted to Philosophical Transactions of the Royal

Society;

• Optimization from Koffi et al. (2010) almost submitted to

Global Biogeochemical cycles.



Outline

• Uncertainties in the carbon cycle;

• A simple predictive model and its uncertainty;

• A little on sensitivity;

• Confronting the model with data;

• Conclusions.



Motivation
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Ranges of global CO2 fluxes. Red = anthropogenic, blue = ocean, green =

land, pink = other vulnerabilities from Raupach et al., Tellus, 2010. Uptakes

from IPCC-2007 Fig. 10.21. Black line shows emission scenario.



Sources of Terrestrial Model Uncertainty

• Different models include different processes;

• Equivalent processes are described with different equations;

• There are many uncertain parameters in these models.



Exploring Parameter Uncertainty

• Write simple box model of terrestrial carbon cycle

• Climate model → global model → simple model;

• Calculate sensitivities of future uptake to inputs;

• Calculate uncertainty of future uptake as function of uncertainty

in input parameters;

• Assimilate current data and study reduced uncertainty on future

uptakes.



Simple Model

living biomass

 

NPP

fast decom.
soil C pool

litter fall slow decom.
soil C pool

storage

soil resp.
(fast)

soil resp.
(slow)

NetUptake = Production− (1−K)× LitterDecomposition
−SoilOutgassing

SoilOutgassing ∝ SoilPool× ωκQTa/10
10

where ω = soil moisture and Ta = air temperature.

∂SoilPool
∂t

= K× LitterDecomposition− SoilOutgassing



Technical Details

• Need derivatives of outputs of simple model and global model

with respect to their inputs;

• Simple model can be differentiated by hand;

• Global model differentiated by the software “Transformation of

Algorithms in FORTRAN” http://www.fastopt.com.

Uncertainty(uptake) = J ×Uncertainty(parameters)× JT

where J is derivative and T is transpose.



Uptake from Prior Model
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Terrestrial uptake (no climate change) from prior model and its 90%

confidence interval. Uptake is anchored at its 2000–2010 value.



Comparison with Other Uncertainties
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Range of uptakes, blue = ocean, green = land from IPCC

models. The yellow band represents the 90% confidence interval

of the uncertainty in the simple model.



Fitting Atmospheric Growth Rate
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Smoothed global growth rate, squares = obs, dashed = prior, solid =

optimised. Note the great improvement in phasing with the optimisation.



Comparing Uptakes
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Decadal mean δNEP,

2000–2090. Black lines =

current climate, red =

climate change. Thin lines =

prior parameters, thick =

optimized.

• δNEP = NEP− NEP(t =
2000−−2010)

• Unrealistically rapid

increase;

• High ∂GPP
∂CO2

:

0.3PgC/yr/ppm cf

FULLBETHY = 0.23 and

LPJ = 0.19. ORCHIDEE

anyone?



Comparing Uncertainties
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Uncertainty in decadal mean

δNEP, 2000–2090. Black

lines = current climate, red

= climate change. Thin lines

= prior parameters, thick =

optimized.

• Uncertainty in δNEP
calculated as C(x) =
JC(p)JT where J = ∂x

∂p

and C is covariance;

• Uncertainties completely

dominated by climate

change;

• Partially reflects

small uncertainty on

photosynthesis parameters.



For those who prefer numbers

Case sum (PgC) Uncertainty (1σ PgC)

prior no-clim 278 126

prior clim-change 656 1141

optimized no-clim 717 78

optimized clim-change 799 107

Value and uncertainty for integrated δNEP from 2000–2090



Climate Feedback Parameter

• G =
P
δNEP(climate)P
δNEP(noclimate);

• Can calculate ∂G
∂p (unpleasant) and hence uncertainty of G;

σ(G) =
√
∇pGC(p)∇pGT

• For C(p) diagonal (prior) this is simple sum.



Equations again

SoilOutgassing ∝ SoilPool× ωκQTa/10
10

where ω = soil moisture and Ta = air temperature.

∂SoilPool
∂t

= K× LitterDecomposition− SoilOutgassing

• σ(G) = 3.54 for prior;

• 80% from κ with rest from Q10 and K;

• σ(G) = 0.04 posterior.



Conclusions

• Tangent linear models are fun;

• The carbon-cycle/climate feedback uncertainty is very large

even within one model;

• For BETHY the sensitivity of respiration to soil moisture is the

biggest contribution to uncertainty;

• The atmospheric record is sufficient to constrain this aspect of

model dynamics.



Using Data Assimilation with Model
Ensembles

• Work very much in progress;

• Similar efforts in physical climate.



Transcom

• How much uncertainty in inversions due to transport?

• Three phases: compare forward models, run known tracers,

compare inversions;

• Law et al., Tellus, 1996, Denning et al., Glob. Biogeochem.

Cyc. 1999, Gurney et al., Nature 2002, Baker et al., Glob.

Biogeochem. Cyc., 2006.



Zonal mean concentration from

fossil fuel source

Zonal mean response to

annually balanced biosphere

source



Transcom III

• Run inversions changing only response functions from different

models;

• Data and uncertainties, prior and uncertainties and algorithm

fixed.

• Annual mean case: 26 response functions, 17 models;

• Seasonal and interannual cases: 268 response functions, 12

models.



Gurney et al., Nature, 2002

Inversion results for

the control (left bar)

and no-biosphere (right

bar). Mean fluxes are

the ‘X’. Positive = source.

Prior flux and uncertainty:

horizontal bar and boxes

(land in green, ocean in

blue). Within model

uncertainty = circles, between model uncertainty = length of

vertical bars. Regions are shown in their approximate north-south

and east-west relationship.



Impact of Vertical Transport on Inversions



Notes

• Stephens et al., Science, 2007;

• Compared different models against independent climatology of

profiles;

• Did not consider posterior uncertainty;

• Main point that not all models are equal.



The Approach

• Use statistical techniques to choose among an ensemble;

• Include the choice of model as an extra unknown;

• Produce a PDF among the models;

• Weight means etc by this PDF



Set-up

• Prior PDF for fluxes and data as for Gurney et al., Nature,

2002, i.e Gaussian;

• Uniform prior distribution for model choice (every model equally

likely);

• Relative probability for each model depends on overlap between

simulation and data (size of black triangle).



Making a long story short

• Collection of linear models H1 . . .HNs

• Let G(~µ,C) be Gausian distribution with mean ~µ and

covariance C

P (~x,H) ∝ G(~x− ~x0,C(~x0) ∗G(~y −H~x,C(~y))

P (H) =
∫
d~xP (~x,H)



Skipping the painful algebra

PH ∝
[
detHC(~x0)HT + C(~y)

]−0.5
exp−1

2
(~y −H~x0)T

[
HC(~x0)HT + C(~y)

]−1
(~y −H~x0)

∑
P (Hi) = 1

• Can be calculated without ever performing an inversion;

• Similar to maximum value of P (~x,H).



Sample of Tabulated values

Model P (H)
JMA-CDTM.maki 0.66

MATCH.law 0.29

MATCH.bruhwiler 0.02

SKYHI.fan 1e-7

• Unrealistically strong

discriminant (7 orders of

magnitude)

• Problem over-determined

so many obs left to

discriminate among models

• Model error (C(~y) should

not be independent.



Applications and Problems

• Using data assimilation to improve model structure as well as

parameters;

• Choosing among an ensemble of models;

• Unusually dependent on proper formulation of uncertainties.



Summary for Today

• Climate DA is possible and can help us improve climate

prediction;

• We can learn a lot by propagating uncertainty into prediction;

• We can extend DA beyond improving a particular model into

the domain of model choice but it’s not easy in real cases.



Overall Summary

• Data assimilation best thought of as a statistical problem;

• Watch the statistics of inputs and results carefully;

• There’s a lot to gain by considering more than just the best

guess for unknowns and simulations;

• The basic theory is flexible enough for interesting extensions,

like model choice but sometimes you have to go back to first

principles.


