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Outline

• Measuring the impact of observations in data 
assimilation systems
* Impact on the analysis (information content)

* Impact on short-term forecasts based on adjoint methods
• Impact of flow-dependent structures in data 

assimilation and link with precursors to dynamic 
instability
* Evaluation of the observability of structure functions (Lupu, 

2010)
• Implications for a hybrid 4D-Var

* The earlier experiments of Fisher and Andersson with a reduced 
rank Kalman filter

* The hybrid 4D-Var/EnKF (Buehner et al., 2009)
• Conclusions



Statistical nature of the assimilation

* To correct a short-term forecast (xb , the background state) with 
error covariance B

 

based on information contained in 
observation y with observation error covariance R

* The resulting analysis xa has an accuracy measured by its error 
covariance Pa which is “less” than that of the background

* The weight is given by the gain matrix K

 

set to minimize the total 
analysis error variance

* Observation operator H

 

has been linearized around the current 
background state 

 
KHBBP

HxyKxx




a

bba

  1
 TT HBHRBHK



Approaches to measuring the impact of 
assimilated observations

Information content
* based on the relative accuracy of observations and the 

background state

Observing System Experiments
* Data denials

* Global view of the impact of observations on the quality of the 
forecasts

Observation impact on the quality of the forecasts
* Sensitivities with respect to observations based on adjoint 

methods  (Baker and Daley, 2000; Langland and Baker, 2003)

* Ensemble Kalman filter methods



Information content

• Ratio of the analysis error covariance to B

The information gained from assimilating a given set of 
observations is represented by the second term, where N is the 
dimension of the model space

• … and in observation space

with M being the number of observations
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Diagnosing the statistical information from 
the results of analysis

• Desroziers (2005)
* use the results of the assimilation to estimate the observation, 

background and analysis error covariances in observation space

* and then,
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• If the a priori and a posteriori error statistics are consistent, 
then             and therefore,

Estimating the information content
 (or Degrees of Freedom per signal)

• Noticing that  1T T  HBH HBH D D

DD 
~

RR 
~ TT HBHHBH 

~
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• Estimation of the DFS

This gives the same information content as obtained from the a 
priori error statistics

     11 






  DHBHHBHRHBHHK TTT trtrtrDFS

     1 1 1T Ttr tr tr DFS        HK HBH D HBH D DD

Presenter
Presentation Notes
Worth noticing is that the estimated R and B differ from the a priori by the same factor. Hence tuning the error statistics does not alter the relative weight of the obs and background error.

If the estimated R as given by this expression is taken at face value, one would (wrongly)  conclude that there are obs. error correlation while, in fact, those relate to B, not R.



Estimating the information content
• Estimate of the information content is based solely 

on diagnostics from the assimilation process
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Robustness of the estimate:
 experiments with a simple 1D-Var

• 1Dvar assimilation of 60 observations with a 
covariance model with homogeneous and isotropic 
correlations

• Statistical average over 2000 analyses
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Robustness of the results with the size of the sample

Observation error Background error



Estimating the observation error covariance

• Estimate of the off-diagonal terms of                           
as a function of distance ri,j
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Estimation of the information content

L (km)

300 11.03 10.88 10.81 10.80 10.70

500 9.50 9.37 9.21 9.20 9.07

1000 7.34 7.08 6.79 6.79 6.75
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Easiest to compute



Information content in 3D-Var and 4D-Var analyses 
from Environment Canada’s system

• Results from the assimilation experiments of Laroche and 
Sarrazin (2010 a,b) over the period December 21, 2006 to 
February 28, 2007

* Exclude the first 11 days (spin-up of the assimilation cycle)
• Observations include

* Radiosondes, aircraft, surface and ship data, wind profilers

* Atmospheric motion vectors from geostationary satellites

* Radiances from polar-orbiting satellites (AMSU-a,b) and geostationary 
satellites (GOES-East and West)

• Diagnostic of statistical consistency:

 

2 /M ~ 1
* Both in 3D-Var and 4D-Var it was found that 2 /M = 0.56

* Error statistics used in the system are overestimated

* Desroziers and Ivanov (2001) and Chapnik et al. (2004) use this 
information to recalibrate the statistics

* This was not the object of this work



Total DFS estimated over different regions for 3D-Var 
and 4D-Var (January-February 2007)



Globe
obs_Total

gionRe
type_ObsgionRe

type_Obs DFS
DFS

100(%)DFS 
Region : Globe
Obs_types : AI, GO, PR, SF, SW, AMSU-A, 

AMSU-B, RAOB

Computation of DFS for each type of observations
 

in 
MSC’s 3D-Var and 4D-Var systems

Lupu et al. (2010)



Observation impact  per observation in each region
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Observing System Experiments (OSEs)

• Experiments reported in Laroche and Sarrazin (2010-
 a,b)

• Evaluation of the impact of observations through 
data denials
* Take an analysis using all observations as a reference and then 

remove one observation type and measure the degradation

* Modification of the observation environment alters the relative 
importance of the observations

• Comparison of the information content for these 
experiments gives a detailed view of the interactions 
between observations



OSEs experiments: 3D-Var and 4D-Var, North America

k

NA
k

p
DFS

DFS values per obstype normalized by the number of observations.

NO_RAOB: DFS per single observation notably increases, especially for 
AMSU-A and GO;

NO_AIRCRAFT: DFS per single observation notably increases, especially for 
RAOB and PR; For other observations (GO, SW and AMSU-B) DFS per obs also 
increases slightly.



Summary

• Information content can be evaluated by diagnosing 
the results of an assimilation

• Provides a detailed view of the impact of the 
observations within the original observation 
environment

• Application to the results from OSEs show how the 
impact of observations on analyses depend on the 
observation environment

• OSEs on the other hand measure the impact of 
observations on the subsequent forecasts 



Observations move the model state from the “background” 
trajectory to the new “analysis” trajectory

The difference in forecast error norms,                 , is due to the 
combined impact of all observations assimilated at 00UTC

Observation Impact Methodology
 (Langland and Baker, 2004)
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Observability of flow dependent structure functions

Forecast

0-h 24-h 

26/01
12 UTC

28/01
12 UTC

Analysis Xa

Background Xb

Verifying 
analysis

Forecast error
(e30 )

Analysis error  (e24 )
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Evaluation of the impact of observations
At initial time
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Evaluation of the impact of observations
At initial time
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Computation of the Observation Impact:

One can obtain w

 

by slightly adapting the assimilation to solve
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Removal of AMSUA results in large increase in AIRS (and other) impacts

Removal of AIRS results in significant increase in AMSUA impact

Removal of raobs results in significant increase in AMSUA, aircraft and 
other impacts (but not AIRS)

Combined Use of ADJ and OSEs  (Gelaro et al., 2008)

…ADJ applied to various OSE members to examine how the mix of 
observations influences their impacts

Presenter
Presentation Notes
Same forward and adjoint systems as in slide 1.



Top panel:  Both blue and red are good…more obs improve forecast than degrade.  Gray not good…more than half of the obs degrade.





Bottom panel:  Magnitude of impact.  Note that scale is not linear.  Negative (blue) is good.   Positive (red) is bad.  Sorry for the different color convention than in top panel.



Fraction of Observations that Improve the Forecast
GEOS-5  July 2005 00z   (Gelaro, 2008)

AIRS

AMSU-A

Control
No AMSU-A

Control
No AIRS

…only a small majority of the observations improve the forecast
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GEM

Reference
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Forecast error (e24
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Sensitivity 
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Key analysis errors algorithm Key analysis errors algorithm –– configurationconfiguration
(Laroche et al., 2002)
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Presentation Notes
The key analysis error algorithm implemented at MSC is based on the Global Environmental Multi-scale (GEM) model and it’s corresponding tangent linear and adjoint versions.

A reference analysis valid at to+24hr is used to estimate the errors within the operational analysis. The cost function can be defined as the norm of the difference between a 24-h forecast and a verifying analysis and an iterative procedure minimizing the short range forecast errors leads to the so-called key analysis errors. Three iterations provide key analysis increments that, when added to the analysis substantially reduce the forecast error (at short and medium ranges).



ModellingModelling
 

backgroundbackground--error covariances using sensitivitieserror covariances using sensitivities

The adapted 3D-Var

 Structure functions defined with respect to a posteriori sensitivities;

 Flow dependent structure functions were introduced in the 3D-Var;

 Error variance along f:

Tf~f~
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2
1

2
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Does a flow-dependent background error formulation improve the 
analysis and subsequent forecast?

(Lupu 2006)

Presenter
Presentation Notes
The adapted 3D-Var was first introudced by Hello and Bouttier (2001). In our study, a different algorithm is proposed and tested in the full 3D-Var system of the Canadian Meteorological Centre. The structure functions were defined with respect to a posteriori sensitivities and were introduced in the 3D-Var;



The modification is done on the background term of the 3D-Var. The new background error covariance matrix B includes the original covariance matrix with homogeneous and isotropic error correlation to which is added a modulation in the space spanned by the sensitivity function. The 3D-var then behaves as usual in regions where the sensitivity function vanishes but adopts the structure of the sensitivity function where it does not.

The parameter s1 is the constraint imposed on the amplitude of the variance in the sensitive direction within the background error matrix. When l1 = 0 and s1 =1, we recover the initial covariance model.



Does a flow-dependent background error formulation improve the analysis and subsequent forecast?

The impact of the change brought by the adapted 3D-Var assimilation was studied using the a posteriori sensitivity functions associated to an inaccurate forecast on the East Coast.





Case study of January 27, 2003Case study of January 27, 2003

Forecast verification, 12 UTC January 28, 2003

CMC analysis
Global-GEM 24hr 

operational forecast

Sea Level Pressure (4 hPa)

Presenter
Presentation Notes
This case was chosen because the 24 hours forecast resulting from the 3D-Var analysis using the global GEM model produced a relatively inaccurate forecast of a low-pressure system over the Canadian Maritimes.

This figure shows the 24-h forecast of the sea level pressure from the global operational GEM model over the Canadian Maritimes and the corresponding verifying analysis for 12 UTC 28 January 2003.

The most visible error is in the location of the surface system, which was forecasted too far to the north by ~ 600 km.



Case study Case study –– Global sensitivity functionGlobal sensitivity function

Initial temperature corrections for the 12 UTC January 27, 2003 
analysis

700hPa

Corrections responsible for the forecast improvement 
of the Canadian Maritimes system and cross section of 
initial temperature correction made along the arrow.

Presenter
Presentation Notes
After three iterations, the sensitivity analysis led to corrections to the initial conditions that minimized the 24-hour forecast error obtained. The global nature of the sensitivity function indicates the necessity of correcting the analysis in different regions of the globe. We show here the correction to the temperature field and its cross section along the direction indicated in the figure.

At initial time, the corrections located along the American east coast show a significant baroclinic structure associated. Those are associated with the weather system of interest over the Canadian Maritimes. The temperature corrections indicate a maximum in the mid and low levels with values between –2 and +2C.



Impact of the adapted 3DImpact of the adapted 3D--Var in the analysisVar in the analysis

Difference between the temperature analysis increments for 12 
UTC January 27, 2003 analysis 3D adapted -3D standard and cross 
section.

700hPa

Presenter
Presentation Notes
The same global sensitivity function was introduced in the formulation of the background-error covariance B to introduce a similar dynamical structure known to improve the forecast. This adapted 3D-Var assimilation includes the global sensitivity function and its variance is controlled through the variance we assign to it. Here, we have chose the value of s1 =100 which amounts to increasing by 25% the effective error variance in this direction.



The picture shows a close-up of the difference between the temperature analysis increments for 12UTC, January 27, 2003 analysis 3D-adapted - 3D-Var standard and cross section. This difference does correspond, as it should, to the global sensitivity function but with a different amplitude.



Case study –Forecast improvement

Energy (total) of the forecast error average over 
Northern Hemisphere Extra-tropics (25N - 90N)

Forecast hour

En
er

gy
 (

J/
K

g)

Global-GEM 
operational

 

forecast

Global-GEM 
sensitivity

 

forecast

Global-GEM 
adapted

 

forecast
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To give a global view, this picture represents the energy (total) of the forecast error (forecast minus reference analysis) averaged over the Northern Hemisphere Extra-Tropics for forecasts with the CMC global model based on the operational analysis (red line), the adapted 3D-Var analysis (blue line) and the sensitivity analysis (black line) valid at 12 UTC 27 January 2003.



The 24 hours forecast error in the Northern Extra-tropics is reduced by 1% in the adapted forecast but by 40% in the sensitivity forecast. 



The forecast improvement at 24 hours is also maintained in the medium range as the estimated key analysis errors continues to grow in the nonlinear regime.



Fit to the observational DataFit to the observational Data

Do the corrections decrease or increase the departure between the 
analysis and the observations ?

> 0 = increase

< 0 = decrease

1,2 3D Var
o o

o 3D Var
o

J ( ) J ( )Δ J
J ( )








x x
x

RAOB    AIREP   SURFC ATOV  SATWIND  TOTAL

1- Sensitivity analysis

D
if

fe
re

n
ce

 r
el

at
iv

e 
en

 J
o 

(%
)

RAOB    AIREP   SURFC ATOV  SATWIND  TOTAL

2- Adapted 3D-Var analysis

D
if

fe
re

n
ce

 r
el

at
iv

e 
en

 J
o 

(%
)

Presenter
Presentation Notes
The sensitivity analyses are obtained under the only constraint that the resulting 24-h forecast error be reduced. They are not constrained to fit the available observations at initial time while the adapted 3D-Var. Do the corrections decrease or increase the departure between the analysis and the observation?



A measure of the fit to the observations is given by the observation component of the cost function, Jo. This figure represents the relative difference between the fit to the observational data (Jo) for the sensitivity analysis and the adapted analysis with respect to the operational analysis valid at 12 UTC 27 January 2003 for different family of observational data.

A positive value means that the departure between the analysis and the observations increase and a negative value means that the departure between the analysis and the observations decrease.

Figures present the difference in Jo for different of observation types as well as their sum (total).





Fit to the observational DataFit to the observational Data
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Positive values mean that the sensitivity analysis is further away from 
the obs. than the initial analysis (same conclusions from ECMWF, Isaksen 
et al., 2004);



 

Negative values mean that the adapted 3D-Var analysis is closer to the 
obs. (due to the increase background-error variance);

Presenter
Presentation Notes
It shows that the sensitivity analysis degrades the fit to the observations (i.e. Jo(xs) > Jo(xa)), particularly for satellite data while a slight improvement is obtained with the adapted 3D-Var for each individual type of observation with the exception of the SATWIND wind data derived from satellite imagery where no significant changes are observed.

However recent work at ECMWF by Isaksen et al. (2004) showed from daily application of the key analysis errors algorithm (with the energy norm) over a two month period that the forecast starting from the sensitivity analysis is, on average, further away from the observations not only at initial time but also during the first 12 hours approximately. This corresponds to one quarter of the optimization period since they were seeking initials corrections that minimize the 48 hours forecast errors.



Observability of flow-dependent structures

• Adapted 3D-Var for which the structure functions 
where defined by normalizing the a posteriori 
sensitivity function

• Consider the case where                 and the analysis 
increment is then

with

and 
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Associated information content and observability

• Evaluation of the DFS in this case

• Correlation between the innovations and a structure 
function

• This defines the observability of a structure 
functions
* Can the observations detect a given structure function
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Example from 1D-Var experiments

• Consider the following cases
* Observations are generated from the same structure function as 

that used in the assimilation

* Observations are generated from a different structure function 
(phase shift)

* Signal has an amplitude lower than the level of observation error



Observability as a function of observation error

Nb obs. C1 C2 ρ
10 obs. 1.29 0.64 0.99
20 obs. 1.96 0.97 0.99
40 obs. 2.26 1.13 1.

=1

10 obs. 0.95 0.64 0.38
20 obs. 1.15 0.97 0.22
40 obs. 1.48 1.13 0.20

=4

10 obs. 0.89 0.64 0.17
20 obs. 0.89 0.97 0.11
40 obs. 0.87 1.13 0.08
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Experiment with the same function



Experiment with a shifted function



Experiments
 

with
 

an adapted
 

3D-Var

• A posteriori sensitivities depend on
* Target area
* Norm used to measure the forecast error
* Initial norm
* Definition of the tangent-linear and adjoint model

• Experiments with an adapted 3D-Var based on EC’s 3D-Var 
assimilation

* Dry energy norm
* Four cases documented in Caron et al. (2007): 

January 19, 2002, 00UTC, Feburary 6, 2002, 00UTC 
January 6, 2003 12UTC;  January 27, 2003 12UTC

* Target area: global, hemispheric (25-90N) and local (area on the East 
Coast of North America)

* Imposition of a nonlinear balance constraint (Caron et al., 2007)



Preliminary
 

test: does
 

it
 

work?

• Normalized
 

analysis
 

increment
 

of a 3D-Var as a 
structure function
* Limiting case where B

 

= 2 vvT

* Does the adapted 3D-Var recover the right amplitude

* This particular choice insures that we have a structure that can 
fit the observations.



Observability
 

for the test case

Obs. type
Correlation coefficient 

January 27,
2003

January 06, 
2003

February 06, 
2002

January 19, 
2002

RAOB 0.73 0.76 0.77 0.76

AIREP 0.73 0.73 0.73 0.72

AMV 0.68 0.72 0.72 0.73

SURFC 0.69 0.74 0.75 0.76

ATOVS 0.59 0.58 0.71 0.65

TOTAL 0.71 0.73 0.75 0.74



Observability
 

of different
 

structure functions
 

based
 on key

 
analyses

Structure
functions

Obs. type , correlation

 

coefficient
January 27,

2003
January 06, 

2003
February 
06, 2002

January 19, 
2002

GLOBAL RAOB 0.01 0.02 0.03 -0.01

AIREP 0.00 0.02 -0.01 -0.01

ATOVS 0.13 0.11 0.07 0.12

TOTAL 0.05 0.05 0.05 0.03

LOCAL RAOB -0.01 0 -0.01 -0.02

AIREP -0.03 -0.01 -0.03 -0.03

ATOVS 0.05 0.01 0.06 0.02

TOTAL 0 0 0 -0.01

HEMISPHERIC RAOB 0.00 0.02 0.01 0.01

AIREP -0.05 0.02 -0.02 -0.03

ATOVS 0.08 0.07 0.07 0.04

TOTAL 0.03 0.04 0.04 0.02

PV-BAL RAOB 0.01 0 0.01 0

AIREP -0.03 0.01 -0.03 0

ATOVS 0.09 0.08 0.08 0.05

TOTAL 0.03 -0.01 0.06 0.02



Observability
 

of a pseudo-inverse obtained
 

from
 

a finite
 number

 
of singular

 
vectors

 
(Mahidjiba

 
et al., 2007) 

• Leading
 

singular
 

vectors
 

are the structures that
 

will
 grow

 
the most

 
rapidly

 
over a finite

 
period

 
of time

* Leading 60 SVs were computed based on a total dry energy 
norm at a lead time of 48-h

* The forecast error is projected onto those SVs at the final time 
which allows to express the error at initial time that explains that 
forecast error (pseudo-inverse)

• Experiments
* 18 cases were considered in December 2007

* Are those structures observable from available observations?

* Observability of SV1 , the leading singular vectors

* Observability of the pseudo-inverse



Observability
 

of the leading
 

singular
 

vector
 

and pseudo-
 inverse

Date
Obs. type

Correlation

 

coefficient 
SV no. 1

Initial time 
SV no. 1

Final time
Pseudo-inverse

2007120100 TOTAL 0.0098 0.0067 0.0169

2007120212 TOTAL 0.0140 -0.0179 -0.0011

2007120400 TOTAL -0.0187 -0.0211 -0.0034

2007120512 TOTAL 0.0022 -0.0020 0.0124

2007120700 TOTAL 0.0159 0.0020 -0.0033

2007120812 TOTAL 0.0019 0.0212 0.0062

2007121000 TOTAL -0.0029 -0.0151 0.0040

2007121112 TOTAL 0.0054 0.0148 0.0096

2007121300 TOTAL 0.0125 -0.0241 -0.0028

2007121412 TOTAL 0.0224 -0.056 0.0209

2007121600 TOTAL 0.0125 0.0235 0.0234

2007121712 TOTAL 0.0041 0.0465 -0.0064

2007121900 TOTAL 0.0119 -0.0097 -0.0010

2007122012 TOTAL 0.0067 0.0217 0.0047

2007122200 TOTAL 0.0103 -0.0084 -0.0053

2007122312 TOTAL 0.0099 -0.0068 0.0110

2007122500 TOTAL -0.0020 -0.0065 -0.0059

2007122612 TOTAL -0.0086 0.0056 -0.0117



Summary
 

and conclusions

• Evaluation of the information content of observations can be 
obtained from simple diagnostics using information generated 
by any assimilation system

* Impact of observations depends on the observing environment
* Offer a measure of the consistency between the statistics used in the 

assimilation and those diagnosed through comparison to observations
• Impact of observations on forecasts can be quantified as well, 

based on a method proposed by Langland and Baker (2004)
* Measurement based on a backward integration of the adjoint model
* Same “ingredients” that are used to compute key analyses to pinpoint 

the source of the forecast error
* Observation impact is defined with respect to their correlation with 

respect to that particular structure
* Our results may explain in part why only half the observations have a 

positive impacts



Conclusion (cont’d)
• Observability

 

of structure functions

 

has been defined

 

in 
observation space

 

as a correlation

 

between

 

innovations and 
the structure function

• Even

 

though

 

those

 

structures do correspond to structure that

 will

 

grow

 

the most

 

or grow

 

to correct the forecast

 

error

 

at

 

a 
given

 

lead

 

time
* A posteriori sensitivities are not well correlated with observations



 

This has been tested for different ways to compute the sensitivities

* Singular vectors were not found to be observable either
• Reduced

 

rank

 

Kalman

 

filters

 

do not seem

 

to be

 

appropriate

 

to 
represent

 

the background error

 

covariances in an assimilation 
system

• Evolved covariances as estimated

 

with

 

an Ensemble Kalman

 filter

 

would

 

be

 

more appropriate

 

for an hybrid

 

4D-Var 
assimilation
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