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Motivation



What is data assimilation?

Data assimilation is the technique

whereby observational data are

combined with output from a

numerical model to produce an

optimal estimate of the evolving

state of the system.
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Why We Need Data Assimilation

• range of observations

• range of techniques

• different errors

• data gaps

• quantities not measured

• quantities linked



Preliminary Concepts



What We Want To Know
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What We Also Want To Know

Errors in models

Errors in observations

What observations to make



Numerical
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The Data Assimilation Process

observations forecasts

estimates of state & parameters

compare

reject

adjust

errors in obs. & forecasts
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Basic Concept of

Data Assimilation

• Information is accumulated in time into

the model state and propagated to all

variables.



What are the benefits of

data assimilation?

• Quality control

• Combination of data

• Errors in data and in model

• Filling in data poor regions

• Designing observational systems

• Maintaining consistency

• Estimating unobserved quantities
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Some Uses of

Data Assimilation (state

estimation, inverse modelling)
• Satellite retrievals

• Operational weather and ocean forecasting

• Seasonal weather forecasting

• Land-surface process

• Surface-flux estimation

• Model parameter estimation

• Global climate datasets

• Planning satellite measurements

• Evaluation of models  and observations
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Types of Data Assimilation

• Sequential

• Non-sequential (4D-variational)

• Intermittent

• Continuous



Sequential Intermittent

Assimilation

analysis analysisanalysis
model model
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Non-sequential Continuous

Assimilation

analysis + model

obs
obs

obs
obsobs

obs



Methods of Data Assimilation

• Optimal interpolation (or approx. to it)

• 3D variational method (3DVar)

• Kalman filter (with approximations)

• 4D-variational (4DVar)
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Statistical Approach to

Data Assimilation
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Data Assimilation

Made Simple

(scalar case)



Least Squares Method

(Minimum Variance)
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Least Squares Method

Continued

0    constraint  thesubject to
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Least Squares Method

Continued
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The precision of the analysis is the sum of the precisions

of the measurements. The analysis therefore has higher

precision  than any single measurement (if the statistics

are correct).



Maximum Likelihood Estimate

• Obtain or assume probability distributions for

the errors

• The best estimate of the state is chosen to

have the greatest probability, or maximum

likelihood

• If errors normally distributed,unbiased and

uncorrelated, then states estimated by

minimum variance and maximum likelihood

are the same



Maximum Likelihood Approach

(Bayesian Derivation)
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Maximum Likelihood
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Variational Approach
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Simple Sequential Assimilation
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Comments

• The analysis is obtained by adding first

guess to the innovation.

• Optimal weight is background error variance

multiplied by inverse of total variance.

• Precision of analysis is sum of precisions of

background and observation.

• Error variance of analysis is error variance of

background reduced by (1- optimal weight).



Simple Assimilation Cycle

• Observation used once and then

discarded.

• Forecast phase to update     and

• Analysis phase to update     and

• Obtain background as

• Obtain variance of background as
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Simple Kalman Filter
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Multivariate Data Assimilation



Multivariate Case
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State Vectors
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Ingredients of Good Estimate

of the State Vector (“analysis”

• Start from a good “first guess” (forecast
from previous good analysis)

• Allow for errors in observations and
first guess (give most weight to data
you trust)

• Analysis should be smooth

• Analysis should respect known
physical laws



Some Useful Matrix Properties
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Observations

• Observations are gathered into an

observation vector      , called the

observation vector.

• Usually fewer observations than variables in

the model; they are irregularly spaced; and

may be of a different kind to those in the

model.

• Introduce an observation operator to map

from model state space to observation space.
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Errors



Variance becomes

Covariance Matrix

• Errors in xi are often correlated

– spatial structure in flow

– dynamical or chemical relationships

• Variance for scalar case becomes

Covariance Matrix for vector case COV

• Diagonal elements are the variances of xi

• Off-diagonal elements are covariances

between xi and xj

• Observation of xi affects estimate of xj



The Error Covariance Matrix
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Background Errors

• They are the estimation errors of the

background state:

• average (bias)

• covariance
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Observation Errors

• They contain errors in the observation

process (instrumental error), errors in

the design of    , and

“representativeness errors”, i.e.

discretization errors that prevent

from being a perfect representation of

the true state.
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Control Variables

• We may not be able to solve the

analysis problem for all components of

the model state (e.g. cloud-related

variables, or need to reduce resolution)

• The work space is then not the model

space but the sub-space in which we

correct       , called control-variable

space
b
x

xxx !+=
ba



Innovations and Residuals

• Key to data assimilation is the use of
differences between observations and
the state vector of the system

• We call                               the innovation

• We call                               the analysis

                                              residual
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Analysis Errors

• They are the estimation errors of the

analysis state that we want to minimize.
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Using the Error

Covariance Matrix

Recall that an error covariance matrix

for the error in    has the form:

 
T
>=< !!C

If               where     is a matrix, then

the error covariance for      is given by:

Hxy = H

x

y
T

HCHC =
y

C



BLUE Estimator

• The BLUE estimator is given by:

• The analysis error covariance matrix is:

• Note that: 
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Statistical Interpolation with

Least Squares Estimation

• Called Best Linear Unbiased Estimator

(BLUE).

• Simplified versions of this algorithm

yield the most common algorithms

used today in meteorology and

oceanography.



Assumptions Used in BLUE
• Linearized observation operator:

•       and       are positive definite.

• Errors are unbiased:

• Errors are uncorrelated:

• Linear analysis: corrections to background
depend linearly on (background – obs.).

• Optimal analysis: minimum variance estimate.
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Optimal Interpolation
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Spreading of Information from

Single Pressure Obs.
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MIPAS observations 6 day model forecast

Analysis

Ozone at 10hPa, 12Z 23rd Sept 2002
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3D variational data assimilation - ozone at 10hPa
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3D variational data assimilation - ozone at 10hPa
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Estimating Error Statistics

• Error variances reflect our uncertainty in the

observations or background.

• Often assume they are stationary in time and

uniform over a region of space.

• Can estimate by observational method or as

forecast differences (NMC method).

• More advanced, flow dependent errors

estimated by Kalman filter.



Estimating Covariance Matrix

for Observations, O

• O usually quite simple:

– diagonal or

– for nadir-sounding satellites, non-zero

values between points in vertical only

• Calibration against independent

measurements



Estimating the Error Covariance

Matrix B

• Model B with simple functions based
on comparisons of forecasts with
observations:

• Error growth in short-range forecasts
“verifying” at the same time (NMC
method)
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3d-Variational Data

Assimilation



Variational Data Assimilation
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Equivalent Variational

Optimization Problem
• BLUE analysis can be obtained by

minimizing a cost (penalty, performance)
function:

• The analysis      is optimal (closest in least-
squares sense to     ).

• If the background and observation errors are
Gaussian, then     is also the maximum
likelihood estimator.
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Remarks on 3d-VAR

• Can add constraints to the cost
function, e.g. to help maintain “balance”

• Can work with non-linear observation
operator H.

• Can assimilate radiances directly
(simpler observational errors).

• Can perform global analysis instead of
OI approach of radius of influence.
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Maximum Probability or

Likelihood
• For Gaussian errors the background,

observation and analysis pdfs are:

where b, o, and a are normalizing factors.

• Maximum probability estimate minimizes
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Comments

• Biases occur in background and observations.

Remove them if known, otherwise analysis is

sub-optimal. Monitor (O-B), but is the bias in

the model or in observations?

• B and O errors usually uncorrelated, but could

be correlations in satellite retrievals.

• Error in the  linearization of H should be much

smaller than observational errors for all values

of               met in the analysis procedure.
b
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Choice of State Variables and

Preconditioning

• Free to choose which variables to use to

define state vector, x(t)

• We’d like to make B diagonal

– may not know covariances very well

–  want to make the minimization of J more

efficient by “preconditioning”: transforming

variables to make surfaces of constant J

nearly spherical in state space
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x2

x1

Cost Function for

Uncorrelated Errors
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The Kalman Filter



Kalman Filter

(expensive)

Use model equations to

propagate B forward in time.

B        B(t)

Analysis step as in OI



Evolution of Covariance Matrices
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Remarks

• In OI (and 3d-VAR) isolated observation

given more weight than observations close

together (forecast errors have large

correlations at nearby observation points).

• When several observations are close

together calculation of weights may be ill-

posed. Therefore combine into a “super

observation”.



Extended Kalman Filter

• Assumes the model is non-linear and

imperfect.

• The tangent linear model depends on the

state and on time.

• Could be a “gold standard” for data

assimilation, but very expensive to

implement because of the very large

dimension of the state space (~ 106 – 107 for

NWP models).



Ensemble Kalman Filter

• Carry forecast error covariance matrix
forward in time by using ensembles of
forecasts:

• Only ~ 10 + forecasts needed.

• Does not require computation of tangent
linear model and its adjoint.

• Does not require linearization of evolution of
forecast errors.

• Fits in neatly into ensemble forecasting.
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4d-Variational Assimilation



4D Variational Data Assimilation

given X(to), the

forecast is

deterministic

vary X(to) for best fit to data
to t

obs.

&

errors



4d-VAR For Single Observation

at time t
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4d-Variational Assimilation

constraint strong a as                                                   
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4d-VAR Continued

The 2nd term on the RHS of the cost function

measures the distance to the background

at the beginning of the interval. The term

helps join up the sequence of optimal

trajectories found by minimizing the cost

function for the observations. The “analysis”

is then the optimal trajectory in state space.

Forecasts can be run from any point on the

trajectory, e.g. from the middle.
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4d-VAR for Single Observation
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4d-VAR Procedure

• Choose               for example.

• Integrate full (non-linear) model forward in
time and calculate    for each observation.

• Map    back to t=0 by backward integration of
TLM, and sum for all observations to give the
gradient of the cost function.

• Move down the gradient to obtain a better
initial state (new trajectory “hits” observations
more closely)

• Repeat until some STOP criterion is met.

note: not the most efficient algorithm
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Comments
• 4d-VAR can also be formulated by the method of

Lagrange multipliers to treat the model equations as
a constraint. The adjoint equations that arise in this
approach are the same equations we have derived
by using the chain rule of partial differential
equations.

• If model is perfect and B0 is correct, 4d-VAR at final
time gives same result as extended Kalman filter
(but the covariance of the analysis is not available in
4d-VAR).

• 4d-VAR analysis therefore optimal over its time
window, but less expensive than Kalman filter.



Incremental Form of 4d-VAR

• The 4d-VAR algorithm presented earlier is

expensive to implement. It requires repeated

forward integrations with the non-linear

(forecast) model and backward integrations

with the TLM.

• When the initial background (first-guess)

state and resulting trajectory are accurate, an

incremental method can be made much

cheaper to run on a computer.



Incremental Form of 4d-VAR
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4D Variational Data Assimilation

• Advantages
– consistent with the governing eqs.

– implicit links between variables

• Disadvantages
– very expensive

– model is strong constraint



Some Useful References

• Atmospheric Data Analysis by R. Daley, Cambridge
University Press.

• Atmospheric Modelling, Data Assimilation and
Predictability by E. Kalnay, C.U.P.

• The Ocean Inverse Problem by C. Wunsch, C.U.P.

• Inverse Problem Theory by A. Tarantola, Elsevier.

• Inverse Problems in Atmospheric Constituent
Transport by I.G. Enting, C.U.P.

• ECMWF Lecture Notes at www.ecmwf.int
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