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Lecture content

¢ CO, and climate

€ The global C cycle and the role of the terrestrial
biosphere: pools, fluxes and processes

€ Measuring land-atmosphere fluxes
€ Models of the terrestrial biosphere
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CO,, NH, and N,O in the last 1000 years
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Greenhouse gases (1)

The global mean radiative forcing of the climate system

for the year 2000, relative to 1750

Level of Scientific Understanding
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Mauna Loa C signal
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Keeling CO2 plots
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CO,: emissions vs atmospheric increase

: El Mifio years

Fossil fuel emissions

Accumulation rate in
oceans and on land
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The global C cycle and the role of the
terrestrial biosphere: pools, fluxes and

Processes
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The Carbon Cycle
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http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycled.html



Carbon Budget during 1989-98
(Gt C y'1; Intergovernmental Panel on Climate Change, 2000)

Fossil fuels,
cement Ocean uptake
6.3+ 0.6 Increase in 23+0.8
atmospheric
CO,
3.3+0.2

Land use change Biospheric sink

1.6+0.8 2.3+1.3
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Carbon Budget in the 1990’s
(Gt C y'1; Royal Society Report, 2001)

Fossil fuels,
cement
6.4+0.4

Increase in
atmospheric

Land use change
(mainly tropical
deforestation)
1.7+0.8

32+0.1

e
—/# CTCD
- Centre for Terrestrial
Carbon Dvnamics

Ocean uptake
1.7+0.5

Tropical
biospheric sink
19+13

Temperate and
boreal
biospheric sink
1.3+0.9
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E 1.6 - 1980's
;@ 1.4 - 1990's

3 1.2 1

nnual net carbon fl

(DeFries, et a., 2002)
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Estimated Carbon Flux from Tropical
Deforestation and Regrowth for 1980s and 90s

Latin America Tropical Asia
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Africa Total Tropics

“Bottom up” estimates
based on satellite
observations indicate
substantially lower fluxes
than estimates based
on national statistics
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The importance of the land surface

The terrestrial biosphere is a crucial element of the carbon
cycle

4 as a source

4 as a sink

4 as an instrument of policy

BUT, its
2 status
* dynamics
L 2 evolution

are the least understood and most uncertain elements in
the carbon cycle, at all scales.
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The big questions

1. What role does the land surface play in modulating
and controlling atmospheric CO,?

2. Where are the major sources and sinks, and what is
their likely long-term behaviour?

3. What are the key processes, and how will they
interact in a changing climate?

4. What observing networks are needed to monitor
and understand the carbon cycle?

5. Can we manage the system?

ENVIROMMENT

:fl/l. " CTCD NATURAL
Centre for Terrestrial

' RESEARCH COUNCIL
Carbon Dvnamics



Kyoto Protocol and C management on land

€ Urgent need to monitor sources and sinks
of greenhouse gases (UN Framework
Convention on Climate Change UNFCCC)

¢ The Kyoto Protocol allows the use of
carbon sinks on land (essentially, planting
new forests) to be offset against emissions
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Measuring surface-atmosphere fluxes
across scales

€ Global (Keeling plots)
€ Continental: atmospheric inversion
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Inference of sinks from flask measurements
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Current knowledge on carbon sources and sinks
(from atmospheric inversions)

ale5-a0=M

Land carbon sinks (<0) and sources (>0) for the 1980s (plain bars) and for
1990-1996 (hatched bars) (Heimann et al., 2001)

i 1-2 Gigatons sequestered on land North of 30°;
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Russian Doll inversions
20 regions over Europe

Input data set:
112 stations, year 1998-2

Gurney et al. data set:
76 stations, year 1992-1996
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Annual optimized fluxes over Europe
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Eddy covariance CO, and H,O fluxes:

Provision of flux data for key target CTCD sites
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CarboAge NEP net C fluxes over one rotation.
Spruce on a peaty gley: N. England
(Mencuccini, Rayment & Grace in prep)

Age-related changes in Met Ecosystem Production
of Sitka spruce forests

SNEP » 149.3 tC
g e /ha over 40 years,
~2% . i.e,3.7tCha-ly?

a o 10 15 20 25 30 32 40

time since clearfelling, years
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Regional observations tool-kit

qn

€ Allows estimates
of the carbon
balance over
large regions
using inverse
modelling

€ Quantifies
interannual
variations in
fluxes in
response to
climate variability

€ Multiple species
approach
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13CO, pulse/flux chambers.
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of gas-lines.

Stable isotope delivery sysfem ‘SID’, including 2.8 km
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Proportion of carbon in vegetation and soils

1) Importance of soils in terrestrial C dynamics

Carbon stocks in vegetation and soil (1 m depth)
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Climate Change Experiments with Carbon Cycle Feedbacks
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\l\ An Uncertain Future: m

Where are the Missing Carbon Sinks?

* Only half of the CO, released into the B cLomu ommuTioN o arwossae cansox moxme (3 |
atmosphere since 1970 years has remained 285 ARSEA
there. The rest has been absorbed by land 300 i
ecosystems and oceans =
+ What are the relative roles of the oceans ji..m AR
and land ecosystems in absorbing CO,? : el AN
« |s there a northern hemisphere land sink? ;15'_
= What are the relative roles of North - o -
America and Eurasia e R = C il

-

« What controls carbon sinks?

*  Why does the atmospheric buildup (blue)
vary with uniform emission rates (red)?

«  How will sinks respond to climate change?

* Reliable climate predictions require an
improved understanding of CO, sinks

» Future atmospheric CO, increases
« Their contributions to global change
E Orbiting Carbon Observatory (OCO) " JPL ﬂrgg:# G
S o Dynamics T

I — FOSSIL FUEL EMISSIONS

\ —ACO2

ATM CARBON (GiClyr)

(L] 1970 | i FRn MW

.



d OCO Spatial Sampling Strategy

+ OCO is designed provide an accurate
description of X, on regional scales

» Atmospheric motions mix CO, over large
areas as it is distributed through the column

« Source/Sink model resolution limited to 19x1°

+ OCO flies in the A-train, 15 minutes
ahead of the Aqua platform

« 1:15 PM equator crossing time yields same
ground track as AQUA

Global coverage every 16 days
+ OCO samples at high spatial resolution
« Nadir mode: 1 km x 1.5 km footprints
+ Isolates cloud-free scenes
* Provides thousands of samples on
regional scales
N » Glint Mode: High SNR over oceans
= + Target modes: Calibration

— Orbiting Carbon Observatory (OCO
j_y ry (OCO)




Inventory methods

Mass balance: DC=DB, + DB + DL + DS

DC  carbon sequestration by vegetation and soil,

B biomass (A: above and B: below ground),
L litter,

S soil carbon

Weaknesses:

Regional: not representative.

Global: incomplete, inconsistent, cannot measure
annual and inter-annual variability in NEP
o CTCD e
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Reconciling Top-Down and Bottom-Up Estimates of the
European Terrestrial Carbon Balance - State-of-the-Art
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Models of the terrestrial biosphere:
a process-based approach
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Gross Primary Production
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Net Ecosystem Production

Loss Global Carbon Exchange

(9C m-2 yr1)
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Losses
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Modelling the Terrestrial Carbon Balance

Coupling dynamics and allocation processes:

Process equation: DC=GPP-R,—-R,-D

GPP gross primary production (photosynthesis),
R respiration (P: plant and H: heterotrophic),
D carbon loss by disturbance.

Allocation equation : DC=DB, + DBg + DL + DS
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A Systems Approach Implies Models

Sensitivity,
Ignorance &
Uncertainty

Observations

Prediction

Process
Understanding

Interconnections
of Processes
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The SDGVM carbon cycle
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Water and carbon cycles

» Water and carbon cycles are closely Transpiration X CO,
linked
Stomate| | —
» Stomata control CO, and H,O exchange _ (
» Soil moisture controls stomatal aperture / # 2\
. Leaf area controls rain interception
- Soil moisture controls leaf area *

» Soil moisture controls C decomposition ( 7 \
H,0
Primary

Production
(GPP)

ﬁ '

» Validating the hydrology and energy
transfer parts of models using stream flow
data

-

> Widely available
» Contain information about whole catchment
. Accurate

=
CTCD arona
EMYIROMMENMT
Centre for Terrestrial RESEARCH COUNCIL
Carbon Dynamics

W g’f N)




NCE 1991 with crop adjustment
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NCE 1992 with crop adjustment
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Predicted Response of Vegetation
to Atmospheric Changes

NPP (10 gCyr )
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SDGVM calculations use Hadley
Centre climate predictions for 2000 -
2100:

doubling of CO,;

mean global temp. increase

from 13.3° C to 17° C. KX rnarura
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Conclusions

€ The land surface plays a central role in the global
carbon cycle, but is the least well-known and
understood component of the cycle.

€ Quantifying atmosphere-land carbon fluxes requires
measurements at many different scales.

Understanding the reasons for these fluxes and their
likely evolution under a warming climate requires
biospheric models; these models need data on carbon
processes and pools.

€ Models provide the framework for integrating
knowledge and data, including measurements of many
different types from satellite sensors.
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