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Motivation



What I1s data assimilation?

Data assimilation is the technique
whereby observational data are
combined with output from a
numerical model to produce an

optimal estimate of the evolving
state of the system.




Why We Need Data Assimilation

"« range of observations
@18l - range of techniques
£l * different errors
=8 - data gaps
=1 * quantities not measured
“¥ « quantities linked







Some Uses of
Data Assimilation

* Operational weather and ocean
forecasting

e Seasonal weather forecasting

e Land-surface process

* Global climate datasets

* Planning satellite measurements

e Evaluation of models and observations



Preliminary Concepts



What We Want To Know

X(t) atmos. state vector

S(t) surface fluxes

C model parameters

X (t) = (x(t),s(t),c)



What We Also Want To Know

Errors in models
Errors in observations

What observations to make



DATA ASSIMILATION SYSTEM
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The Data Assimilation Process

observations forecasts

estimates of state & parameters
m» errors 1n ohs & forecasts



@ observation

model
trajectory




Data Assimilation:
an analogy

Driving with your eyes closed:

open eyes every 10 seconds and
correct trajectory




Basic Concept of
Data Assimilation

 Information Is accumulated in time Into
the model state and propagated to all
variables.



What are the benefits of
data assimilation?

Quality control

Combination of data

Errors in data and in model
Filling In data poor regions
Designing observational systems
Maintaining consistency
Estimating unobserved guantities




Methods of Data Assimilation

Optimal interpolation (or approx. to It)
3D variational method (3DVar)
4D variational method (4DVar)

Kalman filter (with approximations)



Types of Data Assimilation

Sequential
Non-sequential
Intermittent
Continous
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Seqguential Continuous
Assimilation
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Non-sequential Intermittent

Assimilation
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Non-sequential Continuous
Assimilation
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Statistical Approach to
Data Assimilation







Data Assimilation
Made Simple
(scalar case)



Least Squares Method
(Minimum Variance)
T =T +e
I, =1 +&,
<e, >=<e, >=0

< (61)2 >=S 12

2 2
<(&,)" >=s,
<ee, >=0,the two measurementsare

1 1Nncorral areql



Estimate T, asalinear combination
of the observations:

Ta = alTl T a2T2

The analysis should beunbiased : < T, >=T

b a+a, =1



Least Squares Method
Continued

Estimate T, by minimizing its mean squared error :

s, =<(T,- T.)?>=<(a(T,- T) +a,(T, - T,))* >

=< (ag, +a,e,)" >= 3125 12 + azzs 22

subject to theconstraint a, +a, =1



Least Squares Method
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The precision of the analysis is the sum of the precisions
of the measurements. The analysis therefore has higher

precision than any single measurement (if the statistics
are correct).




Variational Approach

1 (T T)° (T'Tz)zl\,J
2 2 u
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J(T) =

T isthevalueof T for which ﬂ/ﬂT =0
J(T),




Maximum Likelihood Estimate

e Obtain or assume probabillity distributions for
the errors

e The best estimate of the state Is chosen to
nave the greatest probability, or maximum
Ikelihood

 |f errors normally distributed,unbiased and
uncorrelated, then states estimated by
minimum variance and maximum likelihood
are the same




Maximum Likelihood Approach
(Baysian Derivation)

Assumewe have already madean observationT,,
(the background forecast in dataassimilation).

Then the probability distribution of thetruth T
for Gaussian error statisticsis:

p(T) W expé e (L T) T theprior pdf.
2




Maximum Likelihood
Continued

Bayes sformula for the posterior pdf given the observation T, is:

p(T,iT) p(T) & (T,-T)’0 & (T-T)*0
1 T5) = ) 2 = ) 2 +
p(T | T,) o(T) M eXpé % beXpé %2 %

snce p(T,) isnormalising factor independent of T.
Maximize the posterior pdf (or In) to estimate the truth.
We get the same answer asminimizing the cost function.

Equivalence holds for multi - dimensional case (for Gaussan statistics



Simple Sequential Assimilation

Let T, =T, T, =T,
T, =T,+W(T, - T,) where (T, - T, ) isthe"innovation".
The optimal weight W isgiven by :

W =s,%(s,’+s_ %), and theanalysis error varianceis:

S a2 = (1' W)S b2



Comments

The analysis is obtained by adding first guess
to the innovation.

Optimal weight is background error variance
multiplied by inverse of total variance.

Precision of analysis is sum of precisions of
background and observation.

Error variance of analysis is error variance of
background reduced by (1- optimal weight).



Simple Assimilation Cycle

e Observation used once and then
discarded.

e Forecast phase to update T, and s ,°
e Analysis phase to update T, and s °
e Obtain background as
T, (t,y) = M[T, ()]
e Obtain variance of background as
S bz(ti+1) =S bz(ti) aternatively s bz(ti+1) = as a2 (t,



Simple Kalman Filter

Analysis step as before.
T,(t.) =M[T,(t)]- e,, Q*=<e, > (model not biased!)

Thene,,, =(T,- T,);,, =M(T,;)- M(T;;) +e,
_ — M
=Me,, +e, whereM =1 /'HT

Forecast background error covarianceis:

(S b))’ =<(&y;n)* >=M?(s,,)° +Q°



Multivariate Data Assimilation



Multivariate Case

"
C*o
o
e
/1 0
observation vector y(t) = gy2+

&Y

state vector Xx(t) =



State Vectors

state vector (column matrix)

true state

background state

analysis, estimate of X



Ingredients of Good Estimate
of the State Vector (“analysis”

o Start from a good “first guess” (forecast
from previous good analysis)

e Allow for errors in observations and first
guess (give most weight to data you
trust)

« Analysis should be smooth

« Analysis should respect known physical
laws



Some Useful Matrix Properties

Transpose of aproduct :(AB)' =B'A'
Inverseof aproduct:(AB)*=BA™

Inverseof atranspose:(A')*=(A™")'
Pogitive definitenessfor symmetrix matrix A :

" X, thescalar xAx' >0, unlessx =0.
(this property is conserved through inversion)



Observations

 Observations are gathered into an
observation vector y called the observation
vector.

o Usually fewer observations than variables in
the model; they are irregularly spaced; and
may be of a different kind to those in the
model.

* |Introduce an observation operator to map
from model state space to observation space.

X ® H (x)



Errors



Variance becomes
Covariance Matrix

Errors in x; are often correlated

— spatial structure in flow
— dynamical or chemical relationships

Variance for scalar case becomes
Covariance Matrix for vector case COV

Diagonal elements are the variances of x;

Off-diagonal elements are covariances
between x; and x;

Observation of x; affects estimate of x;



a@loThe Error Covariance Matrix
@ez—

¢ -
e=C + e"=(g e . e )
C.~ 2
9: i
G s
ee > <ee> .
<eg> <ee > .
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P=<ee' >= G
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Background Errors

 They are the estimation errors of the
background state:

e average (bias) < eb
e covariance

B=<(e- <e, >)(e- <e,>)' >



Observation Errors

 They contain errors in the observation
process (instrumental error), errors in
the design of H, and
“representativeness errors”, I.e.
discretizaton errors that prevent X, from
being a perfect representation of the
true state.

eo:y' H(Xt) <eo>

R=<(e,- <e, >)(e,- <e,>)' >



Control Variables

 \We may not be able to solve the
analysis problem for all components of
the model state (e.g. cloud-related
variables, or need to reduce resolution)

 The work space Is then not the model
space but the sub-space in which we
correct Xb’ called control-variable

space _
X, =X, +0X



Innovations and Residuals

« Key to data assimilation is the use of
differences between observations and
the state vector of the system

- Wecall Y - H (Xb) the innovation
» We call Y - H (Xa) the analysis

residual
Give imbobortant information



Analysis Errors

 They are the estimation errors of the
analysis state that we want to minimize.

Covariance matrix A



Using the Error
Covariance Matrix

Recall that an error covariance matrix C
for the error In X has the form:

C=<ee' >

If Yy =HX where H is a matrix, then the
error covariance for y Is given by:

C,=HCHT



BLUE Estimator

« The BLUE estimator Is given by:

Xa =X, TK(Yy - H(X,))
K=BH'(HBH' +R)™"

e The analysis error covariance matrix Is:

A=(l-KH)B
 Note that:
BH"(HBHT +R)'=(B'+H'RH) 'H'R



Statistical Interpolation with
Least Squares Estimation

e Called Best Linear Unbiased Estimator
(BLUE).

o Simplified versions of this algorithm
yield the most common algorithms used
today In meteorology and
oceanography.



Assumptions Used in BLUE

Linearized observation operator:
H(x)- H(X,) =H(X- X,)

B and R are positive definite.
Errors are unbiased:

SXp - Xy 2=<Y- H(Xt) >=0
Errors are uncorrelated:

<(Xp - X)y- H(x))" >=0

Linear anlaysis: corrections to background
depend linearly on (background — obs.).

Optimal analysis: minimum variance estimate.



Optimal Interpolation

observation observation
l operator

/)(a:Xb-l_K(y' H Xb))

“analysis” o Iinearity H—F

“background”

(forecast) e matrix Invers

e [Imited area

K =BH'(HBH' +R)™"



D=y- H(x,) —at obs. point




END



