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Motivation



What is data assimilation?

Data assimilation is the technique 
whereby observational data are 
combined with output from a 
numerical model to produce an 
optimal estimate of the evolving 
state of the system.
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Why We Need Data Assimilation

• range of observations
• range of techniques
• different errors
• data gaps
• quantities not measured
• quantities linked
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Some Uses of 
Data Assimilation

• Operational weather and ocean 
forecasting

• Seasonal weather forecasting
• Land-surface process
• Global climate datasets
• Planning satellite measurements
• Evaluation of models  and observations
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Preliminary Concepts



What We Want To Know
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What We Also Want To Know

Errors in models

Errors in observations

What observations to make
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The Data Assimilation Process
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Data Assimilation:
an analogy

Driving with your eyes closed: 
open eyes every 10 seconds and 
correct trajectory
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Basic Concept of 
Data Assimilation

• Information is accumulated in time into 
the model state and propagated to all 
variables.



What are the benefits of 
data assimilation?

• Quality control
• Combination of data
• Errors in data and in model
• Filling in data poor regions
• Designing observational systems
• Maintaining consistency
• Estimating unobserved quantities
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Methods of Data Assimilation

• Optimal interpolation (or approx. to it) 

• 3D variational method (3DVar)

• 4D variational method (4DVar)

• Kalman filter (with approximations)
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Types of Data Assimilation

• Sequential
• Non-sequential
• Intermittent
• Continous



Sequential Intermittent 
Assimilation

analysis analysisanalysis
model model
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Sequential Continuous 
Assimilation

obs obs obs obs obs



Non-sequential Intermittent 
Assimilation

analysis + model analysis + model analysis + model

obs obs obs obs obs obs



Non-sequential Continuous 
Assimilation

analysis + model
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Statistical Approach to 
Data Assimilation
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Data Assimilation 
Made Simple
(scalar case)



Least Squares Method
(Minimum Variance)
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Least Squares Method 
Continued
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Least Squares Method 
Continued
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The precision of the analysis is the sum of the precisions 
of the measurements. The analysis therefore has higher 
precision  than any single measurement (if the statistics 
are correct).



Variational Approach
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Maximum Likelihood Estimate

• Obtain or assume probability distributions for 
the errors 

• The best estimate of the state is chosen to 
have the greatest probability, or maximum 
likelihood

• If errors normally distributed,unbiased and 
uncorrelated, then states estimated by 
minimum variance and maximum likelihood 
are the same



Maximum Likelihood Approach 
(Baysian Derivation)

pdf.prior       the
2

)(
exp  )(

:is statisticserror Gaussian for  
 truth  theofon distributiy probabilit Then the

on).assimilati datain forecast  background the(

,n observatioan  madealready  have  weAssume

2

2
1

1








 −
−∝

1σ
TT

Tp

T

T



Maximum Likelihood 
Continued
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Simple Sequential Assimilation
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Comments

• The analysis is obtained by adding first guess 
to the innovation.

• Optimal weight is background error variance 
multiplied by inverse of total variance.

• Precision of analysis is sum of precisions of 
background and observation.

• Error variance of analysis is error variance of 
background reduced by (1- optimal weight).



Simple Assimilation Cycle

• Observation used once and then 
discarded.

• Forecast phase to update     and    
• Analysis phase to update     and 
• Obtain background as

• Obtain variance of background as
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Simple Kalman Filter
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Multivariate Data Assimilation



Multivariate Case
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State Vectors

x

bx
tx

ax

state vector (column matrix)

true state

background state

analysis, estimate of tx



Ingredients of Good Estimate 
of the State Vector (“analysis”
• Start from a good “first guess” (forecast 

from previous good analysis)
• Allow for errors in observations and first 

guess (give most weight to data you 
trust)

• Analysis should be smooth
• Analysis should respect known physical 

laws



Some Useful Matrix Properties
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Observations

• Observations are gathered into an 
observation vector      , called the observation 
vector.

• Usually fewer observations than variables in 
the model; they are irregularly spaced; and 
may be of a different kind to those in the 
model.

• Introduce an observation operator to map 
from model state space to observation space.

y

)(xx H→



Errors



Variance becomes 
Covariance Matrix

• Errors in xi are often correlated
– spatial structure in flow
– dynamical or chemical relationships

• Variance for scalar case becomes 
Covariance Matrix for vector case COV

• Diagonal elements are the variances of xi

• Off-diagonal elements are covariances 
between xi and xj

• Observation of xi affects estimate of xj



The Error Covariance Matrix
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Background Errors

• They are the estimation errors of the 
background state:

• average (bias)
• covariance
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Observation Errors
• They contain errors in the observation 

process (instrumental error), errors in 
the design of , and 
“representativeness errors”, i.e. 
discretizaton errors that prevent      from 
being a perfect representation of the 
true state. 
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Control Variables

• We may not be able to solve the 
analysis problem for all components of 
the model state (e.g. cloud-related 
variables, or need to reduce resolution)

• The work space is then not the model 
space but the sub-space in which we 
correct       , called control-variable 
space

bx
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Innovations and Residuals

• Key to data assimilation is the use of 
differences between observations and 
the state vector of the system

• We call                               the innovation

• We call                               the analysis
residual

)( bxy H−
)( axy H−

Give important information



Analysis Errors

• They are the estimation errors of the 
analysis state that we want to minimize.

taa xx −=ε

Covariance matrix A



Using the Error 
Covariance Matrix

Recall that an error covariance matrix  
for the error in    has the form:

 T >=< εεC

If               where     is a matrix, then the 
error covariance for      is given by:
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BLUE Estimator
• The BLUE estimator is given by:

• The analysis error covariance matrix is:

• Note that: 
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Statistical Interpolation with 
Least Squares Estimation

• Called Best Linear Unbiased Estimator 
(BLUE).

• Simplified versions of this algorithm 
yield the most common algorithms used 
today in meteorology and 
oceanography.



Assumptions Used in BLUE
• Linearized observation operator:

• and       are positive definite.
• Errors are unbiased: 

• Errors are uncorrelated:

• Linear anlaysis: corrections to background 
depend linearly on (background – obs.).

• Optimal analysis: minimum variance estimate.
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Optimal Interpolation
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