

Assimilating EO Data into Terrestrial Carbon Cycle Models

Shaun Quegan (+ CTCD, CESBIO, JRC et al.)

NERC Centre for Terrestrial Carbon Dynamics & University of Sheffield

The current challenge in C cycle research

Objective To produce estimates & predictions of

ecosystem carbon exchange with

quantifiable uncertainty.

Complications Observations have gaps & instrumental

weaknesses.

Models tend to oversimplify and may

miss key processes and linkages.

Solution Data assimilation provides a method to

combine models and data to produce a more accurate description of ecosystem

dynamics.

Global Carbon Data Assimilation System

Source: Ciais et al. 2003 IGOS-P Integrated Global Carbon Observing Strategy

Terrestrial component

Carbon Cycle – Earth Observation Interfaces

Issues

Monitoring

Consistency of models and data:

- are model and measurement quantities compatible?
- comparability of values

Timescales (re-analysis)

Prediction

Are model internal processes and parameters testable and credible?

The Functioning of a DVM

S is the state vector describing the vegetation-soil system.

Calibrating the SDGVM phenology module with EO data

SIBERIA-II: Multi-Sensor Concepts for Greenhouse Gas Accounting of Northern Eurasia

5th Framework Project, 2002-2005

The Central Siberia dataset: ~ 2 M km²

The CESBIO budburst algorithm

- Data set: SPOT-VEG 1999-2001
- Based on minimum in time-series of NDWI data
- Uncertainties in recovered budburst date ~ 7 days

The Date of budburst derived from minimum NDWI (VGT sensor, 2000) N. Delbart, CESBIO

Centre for Terrestrial Carbon Dynamics

The SDGVM budburst algorithm

When $\sum_{dovs} \min(0, T - T_0) > \text{Threshold}$, budburst occurs.

The sum is the red area. Optimise over the 2 parameters, Threshold and T_0 (minimum effective temperature).

The calibration procedure

Data - model comparison 1999

Budburst from NDWI data

Model budburst: optimised parameters

Calibration parameters (forest only)

Year	T _o	Threshold	MMSE
	(degrees)	(degree- days)	(days)
1999	-2.9	117	6.0
2000	4.4	29	7.0

Green-up relation to N Pacific Index

The NP Index is averaged from April the previous year to March the present year

Effect of uncertainty in green-up day

'True' Assimilation

Basis of radiation models (optical)

Basis of radiation models (optical)

- Model of canopy scattering:
 - Leaf properties
 - Scattering object density (LAI), orientation, and spatial distribution
 - Soil / understorey properties for low density canopies
- solutions by analytical or numerical methods

Link to the C models

- C models include concept of radiation model
 - For calculation of intercepted radiation
- Observation model
 - Provides link from subset of C-model state variables to EO observation
 - Main linkages:
 - LAI, Density (for limited conditions)
 - leaf properties (hyperspectral data)
 - leaf dry matter, chlorophyll (nitrogen), water
 - xanthophyll cycle (light use efficiency)

Exploiting quantities derived from radiance

Sheffield Dynamic Vegetation Global Model

Application of the models

- **♦** Testing C models (SDGVM)
 - Confront predictions with observations

A prediction-correction system

Centre for Terrestrial Carbon Dynamics

Centre for Terrestrial Carbon Dynamics

Pools and fluxes

Hydrology Carbon model EPpt GPP - $W_{\rm S1}$ W_{S2} W_{S3}

Conclusions

- Calibration of DVM parameters with EO data provides a means to improve the predictive power of the models, e.g., phenology, fire.
- Well-developed forward models for scattering and reflectance exist; a current challenge is to interface them to biospheric models for monitoring and assimilation.
- Because of possible problems in derived products, such as fAPAR, assimilation of radiances sems preferable. However, this is dependent on how radiation absorption is represented in the biospheric model.
- Successful assimilation schemes have just been developed for biospheric models. By using existing forward models, these provide a framework for assimilating EO data.
- Watch this space!

