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Job opportunity 

n Post-doc position available at LEGI (Grenoble, a nice place for 

skiing, hiking, biking etc.),  to develop an ocean colour 
assimilation system in a coupled physical/biogeochemical 
model of the North Atlantic

n Interested ? Contact me before Friday, or send me a CV + 
expression of interest (Pierre.Brasseur@hmg.inpg.fr)



Forecast

A
n

a
ly

s
is

i i+1

yi+1

1. Kalman Filter fundamentals
Assimilation cycle 



OUTLINE

q State-of-the-art
1. Kalman filter: fundamentals

2. Ocean data assimilation: specific issues

3. Error sub-spaces 

4. Low rank filters: SEEK and EnKF

q Advanced issues
5. Objective validation and evaluation of DA systems

6. Error tuning and adaptive schemes

7. Improved temporal strategies : FGAT and IAU

8. Kalman filtering with inequality constraints

q The MERCATOR/MERSEA Assimilation Systems



3. Error sub-spaces 
Why ?

q A full Kalman filter cannot be implemented into realistic ocean models 
(error forecast and analysis equations too expensive in CPU and 
memory requirements)

q « Optimal Interpolation » over-simplifies the propagation of errors by 
neglecting dynamical principles and statistical information

Noting that :

The concept of error sub-space is introduced, with the objectives to : 

q Substantially reduce the computational burden of a full Kalman filter, but

q Preserve the essential properties of statistical estimation.



Low-rank approximation:    PO specified as a low rank matrix 

              PO = SO SO
T , with  SO  of dim n x r , r << n = dim( x )

n Accurate specification of  a full-rank  PO  is impossible !

n Approximation done at initial assimilation time only  

n Drastic simplification of analysis and forecast steps : r ~ 10-100

3. Error sub-spaces 
Error covariance matrix decomposition

q Properties: covariance matrices are symetric, positive definite

q Error sub-space S : defined as an approximation of            , limited to the 

dominant eigenmodes/eigenvalues which best represent the covariance P

eigenvectors

eigenvalues



Variants to build the sub-space :
q EOFs from model variability: large-scale modes well suited to 

basin-scale problems (e.g. Tropical Pacific) ; local modes well suited to 
eddy-resolving ocean DA problems (Atlantic basin HR models) 

q EOFs of prescribed covariance functions, using analytical 

models

q Lyapunov, singular, breeding modes : for non-linear models

q Ensemble of Monte-Carlo perturbations of model 
states

3. Error sub-spaces 
Variants 

r ~10-100

n ~106-108
All covariance informations are 
contained in       !



3. Error sub-spaces 
EOF computations 

q Practical recipe : to compute 3D, multivariate EOFs from a model run

ü Sampling of « historical » sequence:

ü Eigenmodes of « sample » matrix                              can be easily 

computed from the eigenmodes of                             because

ü Truncation to r dominant modes 



SST / température and salinity representers  (ORCA2)

Time-evolving background error

Simulation x

Moving average

 Time-evolving background error
Testut et al., 2005 

Objective: improve the representation of high-frequency processes



Variants to evolve the sub-space
q « Extended » evolutive :                       (apply linear tangent model : Pham et al., 

1998)

q « Interpolated » evolutive :                                                     (use non- linear 

model to update the error modes dynamically : Brasseur et al., 1999; Ballabrera et al., 2001)

q « Fixed basis » :                     (assume persistence or dominant model error to 

update the sub-space: Verron et al., 1999)

Concept:  
     Use order reduction                         to compute

n Time-evolving sub-space at moderate cost (max r model integrations)

n Model error parameterized in the evolving sub-space                                 
to preserve low rank 

4. Low rank Kalman filters 
Forecast equation - SEEK filter  



Variants to compute updates
q « Global » analysis : the standard formulation , requires regular data 

distributions in space  to avoid spurious corrections at large distances

q « Local » analysis : define H as a « local » operator to compensate for 

truncation errors and eliminate remote influence of data (Brankart et al., 2003)

Concept:  Use order reduction                           to compute the K gain

        !

n More efficient inversion: in reduced space instead of observation space, 

with r often much smaller than dim (y) 

n Updates are combinations of modes:

4. Low rank Kalman filters 
Analysis equation - SEEK filter 



Local EOFs 

S
S

H
S

S
T

T(z) S(z)

(from Picaut et al., 2001)

Global EOFs 

(from Testut et al., 2001)

Examples of error modes 



Concept:  
     Use an ensemble of r model states            to specify the spread of 

possible initial conditions around the mean            and propagate 

each member individually (Evensen 1994).

4. Low rank Kalman filters 
Ensemble Kalman filter  

Forecast equation: 

This provides automatically: 

Analysis equation: 

This provides automatically: 



Same philosophy : 

Sequential corrections along privileged directions of error growth

   

Differences between SEEK, EnKF, EnKS : Nerger et al., Tellus, 2005

Ensemble 
forecast

The Ocean’s 
attractor

Initial 
ensemble Forecast error 
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4. Low rank Kalman filters 
EnKF vs. SEEK  



innovation 

residual

observation misfit

t

obs. increment

5. Validation and evaluation of DA systems
Innovation statistics



Ø  Examples of statistical “anomalies”:

1. biases in innovation sequence : 

2. inconsistencies in innovation amplitudes : 

§ A major difficulty with DA schemes is the specification of background and 
observation  error statistics, which are critical to the analysis step. 

§ During the assimilation process, « anomalies » can be detected between the 
innovation sequence and the prior statistical assumptions (in a KF context).

q Innovation « seen » by the filter: 

q Error statistics :

5. Validation and evaluation of DA systems
Innovation statistics



Comparison between 2 estimations of the forecast 
error variance in a zonal section crossing the Gulf 
Stream (HYCOM model, Brankart et al., 2003): 

(i) from the filter (blue histograms) and 
(ii) from innovation sequence (black bars).

SSH SST

5. Validation and evaluation of DA systems
Example



5. Validation and evaluation of DA systems
Detection of system biases 

Océan Global

average SLA increment,  1993-2002,    (cm)

Mercator global ocean prototype (Ferry et al., 2006)



Concept:  « on line » modification of prior statistics ( P f , R , Q , … ) 

in order to better match the statistics of the innovation sequence

n Simple adaptive schemes can be implemented easily, and at low cost, into 
operational systems

Adaptivity variants 
q « Adaptive basis » : use residual innovation to generate new modes and refresh 

the sub-space intermittently (Brasseur et al., 1999; Durand et al., 2003)

q « Adaptive variance » : tune model error parameterization to improve the fit 
between innovation and filter statistics (Brankart et al., 2003)

6. Error tuning 
                               Adaptive schemes

determined using innovation 
statistics history

Parameterization example :



6. Error tuning 
                               Example

Model error amplification Forecast error estimates



q Ocean observations are continuously distributed in time during the 
assimilation period; however, it is impossible to rigorously incorporate 
the data at their exact acquisition time. Therefore, intermittent data 
assimilation schemes are approximate.

q Typical length of assimilation periods: 

• 3-7 days for mesoscale ocean current predictions;

• 30 days for initialisation of seasonal climate predictions.

q Two related problems arise with intermittent corrections: shocks to 
the model, and data rejection.

7. Improved temporal strategies
Distributed observations

Strategies to avoid these problems ?



q Discrete DA problem

7. Improved temporal strategies
Distributed observations

i i+1

yi+1
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y(i, i+1)

q Continuous DA problem



7. Improved temporal strategies
Example: composite data sets

3-day composite AVHRR SST  

December 20-21-22,1992

3-day composite SLA  

December 20-21-22,1992

q The observation vector         contains informations related to different instants. 



7. Improved temporal strategies
« Shocks » to model forecasts

Assimilation of isolated T/S profiles: 
SSH increment after 1, 2, 3 days of 
model forecast

1 day  2 days

 3 days



7. Improved temporal strategies
« Rejection » of SST data assimilation



2 possible modifications of KF :
q  FGAT (First Guess at Appropriate Time)
q  IAU (Incremental Analysis Update, Bloom et al., 1996)  

Forecast 1
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Forecast 2         
IAU

FGAT

7. Improved temporal strategies
Towards a time-continuous DA scheme



7. Improved temporal strategies
IAU implementation

q Implementation of Incremental Analysis Update in OPA 
primitive equation model (Ourmières et al., 2006): 

Ø Compute innovation using SST/SLA data and FGAT scheme ;

Ø Compute Kalman gain and analysis increment at the end of 
assimilation window using the standard algorithm;

Ø Divide temperature and salinity increments by the number of 
model time steps in assimilation window 

Ø Integrate the ocean model on (ti , ti+1) once again, with 

modified equations for temperature and salinity, i.e :



7. Improved temporal strategies
IAU - example

q TEST: SST assimilation – 05/11/92



q Inequality constraints are inherent to ocean models

q Examples  

• Concentrations in biogeochemical models must be positive

• T must be larger than freezing temperature

• Static stability (a non-linear combination of T/S vertical gradients) 
must be verified at every assimilation step

• …

q The traditional Kalman filter framework with gaussian statistics 
doesn’t guarantee equality/inequality constraints

q Empirical correction schemes can be implemented after the statistical 
analysis step to restore the constraints

8. Kalman filter with inequality constraints 
Motivations

Poster by Claire Lauvernet for more details



8. Kalman filter with inequality constraints 
DA-induced static instability



Phyto

Nitrate

Zoo

Ammonium

Bacteria

DON

PON POC

DOC

DIC

       Ecosystem model   

• FDM formulation in the euphotic zone
• Regeneration model below

8. Kalman filter with inequality constraints 
DA into coupled  physical-biological model

       Hydrodynamic model   

• OPA code, horizontal resolution 1/3°

• SST/SLA assimilation using SEEK



8. Kalman filter with inequality constraints 
Impact on nutrient  dynamics

Free run Assimilated run

Diffusive PO4 input (mol.m-2) in the euphotic zone



8. Kalman filter with inequality constraints 
Impact on surface chlorophyll 

SeaWiFS

No DA
DA 

unconstrained

DA 
constrained

q Surface chl_a concentration (mg/m3) – July 1998



Variational Methods
Conlusions

q Statistical schemes derived from the Kalman filter have been successfully 
developed from theoretical basis to operational oceanographic implementations, 
for both research and operational applications.

q The specification of adequate error statistics (sub-space, statistical models etc.) 
is a central issue. Simplified KF (e.g. SEEK with fixed basis) have been very 
effective to test different statistical models.

q There is no generic method that can be considered as a « plug-and-play » 
solution. Each particular DA problem requires a good degree of understanding 
and ad hoc developments. 

q The next challenge to DA could be to combine local and global inversions (i.e. 
hybrid 4D-VAR / KF methods).  
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