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xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

m ≡ [HPbHT + R]-1 (y - Hxb) is a p-vector, with components (mi)

xa = xb + Σi miwi

where wi is the i-th column vector of matrix Pb
 HT.

wi, which belongs to state space is the representer associated with i-th observation
yi. It is entirely determined by the i-th row of H (i. e. the link between yi and
state vector x) and background error covariance matrix Pb. It represents the
impact of yi on analysis.
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa presssure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Best Linear Unbiased Estimate

Available data consist of

Background xb  =  x  + ζb

‘Observations’ y  =  Hx + ε

Errors assumed to be unbiased, E(ζbζbT) = Pb, E(εεT) = R, E(ζbεT) = 0

BLUE
xa = xb + Pb

 HT
 [HPbHT + R]-1 (y - Hxb)

Pa = Pb
 - Pb

 HT
 [HPbHT + R]-1 HPb

Equivalent set of formulæ

 xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H
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Best Linear Unbiased Estimate (continuation 1)

H can be any linear operator

Example : (scalar) satellite observation

x = (x1, …, xn)T  temperature profile

Observation y = Σi hixi + ε = Hx + ε  ,      H = (h1, …, hn)     ,      E(ε2) = r
Background xb = (x1

b, …, xn
b)T ,     error covariance matrix Pb = (pij

b)

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

 [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σijhihj pij
b
 + r)-1 ≡ µ scalar !

� −  Pb = pb In  xi
a  = xi

b 
 + pb hi µ

� −  Pb = diag(pi
b) xi

a  = xi
b 

 + pi
b hi µ

       −  General case xi
a  = xi

b 
 + Σj pij

b hj µ 
Each level i is corrected, not only because of its own contribution to the observation, but because of the 
contribution of the other levels to which its background error is correlated.
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Best Linear Unbiased Estimate (continuation 2)

Variational form of the BLUE

 BLUE xa minimizes following scalar objective function, defined on state space

ξ ∈  S  → 

�     J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)

  =         Jb      +      Jo

‘3D-Var’ 

Can easily, and heuristically, be extended to the case of a nonlinear
observation operator H.

Used operationally in USA, Australia, China, …
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Question. How to introduce temporal dimension in
estimation process ?

 Logic of Optimal Interpolation can be extended to time dimension.

 But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) xk. Belongs to
state space S (dimS = n)

Evolution equation

xk+1 = Mk(xk) + ηk

 Mk is (known) model, ηk is (unknown) model error
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Sequential Assimilation

• Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

• Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model
states to be estimated.
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 Observation vector at time k

yk = Hkxk + εk k = 0, …, K
E(εk) = 0   ;  E(εkεj

T) = Rk δkj

Hk linear

 Evolution equation

xk+1 = Mkxk + ηk k = 0, …, K-1
E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj

Mk linear

 E(ηkεj
T) = 0  (errors uncorrelated in time)
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At time k, background xb
k and associated error covariance matrix Pb

k known

 Analysis step

 xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)

 Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k

 Forecast step

 xb
k+1 =  Mk xa

k

 Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T]

= Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T - E[ηk (xa

k - xk)T] - E[(xa
k - xk)ηk

T]  + E[ηkηk
T]

= Mk Pa
k Mk

T + Qk



11

To sum up

 Analysis step

 xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)

 Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k

 Forecast step

 xb
k+1 =  Mk xa

k

 Pb
k+1 = Mk Pa

k Mk
T + Qk

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (xb
0, Pb

0)
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If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real

state xk from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix Pb

k (resp. Pa
k).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

! [xb
k, Pb

k] and ! [xa
k, Pa

k].
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more to
be nonlinear.

 Analysis step

 xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]

 Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 Hk’ Pb
k

 Forecast step

 xb
k+1 =  Mk(xa

k)
 Pb

k+1 = Mk’ Pa
k Mk’T + Qk

Extended Kalman Filter (EKF, heuristic !)
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Costliest part of computation

 Pb
k+1 = Mk Pa

k Mk
T + Qk

Multiplication by Mk = one integration of the model between times k and k+1.
Computation of Mk Pa

k Mk
T ≈ 2n integrations of the model

Need for determining the temporal evolution of the uncertainty on the state of
the system is the major difficulty in assimilation of meteorological and
oceanographical observations
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to point
located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Variational approach

Available data consist of

- Background estimate at time 0
   x0

b  =  x0
  + ζ0

b  E(ζ0
bζ0

bT) = P0
b

- Observations at times k = 0, …, K
   yk = Hkxk + εk E(εkεj

T) = Rk

 - Model (supposed now, and for the time being, to be exact)
   xk+1 = Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear

Then objective function

ξ0 ∈  S  → 

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

subject to ξk+1 = Mkξk , k = 0, …, K-1
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J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

  Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = ξ0 (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the explicit
knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.

Gradient computed by adjoint method.
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How to numerically compute the gradient ∇u J ?

Direct perturbation, in order to obtain partial derivatives ∂J/∂ui by finite
differences ? That would require as many explicit computations of the
objective function J as there are components in u. Practically impossible.
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Adjoint Method

Input vector u = (ui), dimu = n
Numerical process, implemented on computer (e. g. integration of numerical
model)

u → v = G(u)
� v = (vj) is output vector , dimv = m

� Perturbation δu = (δui) of input. Resulting first-order perturbation on v

� δvj = Σi (∂vj/∂ui) δui

� or, in matrix form
� δv  =  G’δu

� where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix,
of G.
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Adjoint Method (continued 1)

       δv  =  G’δu (D)

� Scalar function of output
J(v)  =  J[G(u)]

Gradient ∇u J of J with respect to input u?

‘Chain rule’

∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)

  or

�             ∇u J  =  G’T ∇v J  (A)



21

Adjoint Method (continued 2)

� G is the composition of a number of successive steps

G = GN ° … ° G2 ° G1

‘Chain rule’

G’ = GN’ … G2’ G1’

 Transpose
�

G’T = G1’T G2’T … GN’T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used gain in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).


